Nav: Home

New X-ray method allows scientists to probe molecular explosions

June 15, 2016

Argonne, Ill. -- Summer blockbuster season is upon us, which means plenty of fast-paced films with lots of action. However, these aren't new releases from Hollywood studios; they're one type of new "movies" of atomic-level explosions that can give scientists new information about how X-rays interact with molecules.

A team led by researchers from the U.S. Department of Energy's Argonne National Laboratory used the high-intensity, quick-burst X-rays provided by the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory to look at how the atoms in a molecule change when the molecule is bombarded with X-rays.

"The LCLS gives us a unique perspective on molecular dynamics because of the extremely brief X-ray pulses that we can use," said Antonio Picon, an Argonne X-ray scientist and lead author. "We're able to see how charge and energy can flow through a system with amazing precision."

By using a new method called X-ray pump/X-ray probe, the researchers were able to excite a specifically targeted inner-shell electron in a xenon atom bonded to two fluorine atoms. After the electron was excited out of its shell, the unbalanced positive charge in the rest of the molecule caused the molecule to spontaneously dissociate in a process known as "Coulomb explosion."

"The new X-ray pump/X-ray probe technique is so powerful because it allows us to shake the molecule at one point, and look at how it changes at a second point," said Argonne X-ray scientist and study author Christoph Bostedt.

The xenon difluoride molecule is only a first step for the technique. In the future, the same X-ray pump/X-ray probe method could find a broad range of applications, such as following the ultrafast structural changes that occur in light-sensitive molecules or the flow of energy in molecules. By understanding intramolecular energy flow, researchers can better develop novel materials to harness the sun's energy, such as photovoltaics and photocatalysts.

The new technique could also help researchers address challenges relating to the protein structure determination. For pharmaceutical studies, X-rays are often used to figure out the structures of proteins, but during that process they can also damage parts of them.

"This technique lets you see how neighboring atoms are affected when certain regions interact with X-rays," said Stephen Southworth, an Argonne senior X-ray scientist.

By using an X-ray pump to excite one of the innermost electrons in the molecule, the researchers were able to target one of the electrons that is most central to and characteristic of the molecule. "This technique gives us the ability to take a series of quick snapshots to see what happens when we change a fundamental part of a molecule, and what we learn from it can inform how we approach the interactions between light and molecules in the future," said Picon.

The research, which was funded by the DOE Office of Science, involved a collaboration between Argonne, SLAC, and Kansas State University. "For these kinds of studies, you really need a team that combines world leaders in X-ray sources, particle detection and sample manipulation," Southworth said.

An article based on the study, "Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics," appeared in the May 23 online edition of Nature Communications.
-end-
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Argonne National Laboratory

Related Molecules Articles:

Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
Hand-knitted molecules
Molecules are usually formed in reaction vessels or laboratory flasks.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
More Molecules News and Molecules Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...