Nav: Home

Did gravitational wave detector find dark matter?

June 15, 2016

The eight scientists from the Johns Hopkins Henry A. Rowland Department of Physics and Astronomy had already started making calculations when the discovery by the Laser Interferometer Gravitational-Wave Observatory (LIGO) was announced in February. Their results, published recently in Physical Review Letters, unfold as a hypothesis suggesting a solution for an abiding mystery in astrophysics.

"We consider the possibility that the black hole binary detected by LIGO may be a signature of dark matter," wrote the scientists in their summary, referring to the black hole pair as a "binary." What follows are five pages of annotated mathematical equations showing how the researchers considered the mass of the two objects LIGO detected as a point of departure, suggesting that these objects could be part of the mysterious substance known to make up about 85 percent of the mass of the universe.

A matter of scientific speculation since the 1930s, dark matter has recently been studied with greater precision; more evidence has emerged since the 1970s, albeit always indirectly. While dark matter itself cannot yet be detected, its gravitational effects can be. For example, the influence of nearby dark matter is believed to explain inconsistencies in the rotation of visible matter in galaxies.

The Johns Hopkins team, led by postdoctoral fellow Simeon Bird, was struck by the mass of the black holes detected by LIGO, an observatory that consists of two expansive L-shaped detection systems anchored to the ground. One is in Louisiana and the other in Washington State.

Black hole masses are measured in terms of multiples of our sun. The colliding objects that generated the gravity wave detected by LIGO - a joint project of the California Institute of Technology and the Massachusetts Institute of Technology - were 36 and 29 solar masses. Those are too large to fit predictions of the size of most stellar black holes, the ultra-dense structures that form when stars collapse. But they are also too small to fit predictions for the size of supermassive black holes at the center of galaxies.

The two LIGO-detected objects do, however, fit within the expected range of mass of "primordial" black holes.

Primordial black holes are believed to have formed not from stars but from the collapse of large expanses of gas during the birth of the universe. While their existence has not been established with certainty, primordial black holes have in the past been suggested as a possible solution to the dark matter mystery. Because there's so little evidence of them, though, the "dark matter is primordial black holes" hypothesis has not gained a large following among scientists.

The LIGO findings, however, raise the prospect anew, especially as the objects detected in that experiment conform to the mass predicted for dark matter. Predictions made by scientists in the past held that conditions at the birth of the universe would have produced lots of these primordial black holes distributed roughly evenly in the universe, clustering in halos around galaxies. All this would make them good candidates for dark matter.

The Johns Hopkins team calculated how often these primordial black holes would form binary pairs, and eventually collide. Taking into account the size and elongated shape believed to characterize primordial black hole binary orbits, the team came up with a collision rate that conforms to the LIGO findings.

"We are not proposing this is the dark matter," said one of the authors, Marc Kamionkowski, the William R. Kenan Jr. Professor in the Department of Physics and Astronomy. "We're not going to bet the house. It's a plausibility argument."

More observations from LIGO and other evidence would be needed to support the hypothesis, including further detections like the one announced in February. That could suggest greater abundance of objects of that signature mass.

"If you have a lot of 30-mass events, that begs an explanation," said co-author Ely D. Kovetz, a postdoctoral fellow in physics and astronomy at Johns Hopkins. "That the discovery of gravitational waves could be connected to dark matter" is creating lots of excitement among astrophysicists, he said.

"It's got a lot of potential," Kamionkowski said.
-end-


Johns Hopkins University

Related Dark Matter Articles:

Does dark matter annihilate quicker in the Milky Way?
Researchers at the Tata Institute of Fundamental Research in Mumbai have proposed a theory that predicts how dark matter may be annihilating much more rapidly in the Milky Way, than in smaller or larger galaxies and the early Universe.
Origin of Milky Way's hypothetical dark matter signal may not be so dark
A mysterious gamma-ray glow at the center of the Milky Way is most likely caused by pulsars.
A new look at the nature of dark matter
A new study suggests that the gravitational waves detected by the LIGO experiment must have come from black holes generated during the collapse of stars, and not in the earliest phases of the Universe.
Dark matter may be smoother than expected
Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought.
Supercomputer comes up with a profile of dark matter
In the search for the mysterious dark matter, physicists have used elaborate computer calculations to come up with an outline of the particles of this unknown form of matter.
Mapping the 'dark matter' of human DNA
Researchers from ERIBA, Radboud UMC, XJTU, Saarland University, CWI and UMC Utrecht have made a big step towards a better understanding of the human genome.
Reconciling dwarf galaxies with dark matter
Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe.
Did gravitational wave detector find dark matter?
When an astronomical observatory detected two black holes colliding in deep space, scientists celebrated confirmation of Einstein's prediction of gravitational waves.
Dark matter does not contain certain axion-like particles
Researchers at Stockholm University are getting closer to corner light dark-matter particle models.
SDU researchers present a new model for what dark matter might be
There are indications that we might never see the universe's mysterious dark matter.

Related Dark Matter Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".