Nav: Home

Gravitational waves detected from second pair of colliding black holes

June 15, 2016

On December 26, 2015 at 03:38:53 UTC, scientists observed gravitational waves--ripples in the fabric of spacetime--for the second time.

The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA.

The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.

Gravitational waves carry information about their origins and about the nature of gravity that cannot otherwise be obtained, and physicists have concluded that these gravitational waves were produced during the final moments of the merger of two black holes--14 and 8 times the mass of the sun--to produce a single, more massive spinning black hole that is 21 times the mass of the sun.

"It is very significant that these black holes were much less massive than those observed in the first detection," says Gabriela González, LIGO Scientific Collaboration (LSC) spokesperson and professor of physics and astronomy at Louisiana State University. "Because of their lighter masses compared to the first detection, they spent more time--about one second--in the sensitive band of the detectors. It is a promising start to mapping the populations of black holes in our universe."

During the merger, which occurred approximately 1.4 billion years ago, a quantity of energy roughly equivalent to the mass of the sun was converted into gravitational waves. The detected signal comes from the last 27 orbits of the black holes before their merger. Based on the arrival time of the signals--with the Livingston detector measuring the waves 1.1 milliseconds before the Hanford detector--the position of the source in the sky can be roughly determined.

"In the near future, Virgo, the European interferometer, will join a growing network of gravitational wave detectors, which work together with ground-based telescopes that follow-up on the signals," notes Fulvio Ricci, the Virgo Collaboration spokesperson, a physicist at Istituto Nazionale di Nucleare (INFN) and professor at Sapienza University of Rome. "The three interferometers together will permit a far better localization in the sky of the signals."

The first detection of gravitational waves, announced on February 11, 2016, was a milestone in physics and astronomy; it confirmed a major prediction of Albert Einstein's 1915 general theory of relativity, and marked the beginning of the new field of gravitational-wave astronomy.

The second discovery "has truly put the 'O' for Observatory in LIGO," says Caltech's Albert Lazzarini, deputy director of the LIGO Laboratory. "With detections of two strong events in the four months of our first observing run, we can begin to make predictions about how often we might be hearing gravitational waves in the future. LIGO is bringing us a new way to observe some of the darkest yet most energetic events in our universe."

"We are starting to get a glimpse of the kind of new astrophysical information that can only come from gravitational wave detectors," says MIT's David Shoemaker, who led the Advanced LIGO detector construction program.

Both discoveries were made possible by the enhanced capabilities of Advanced LIGO, a major upgrade that increases the sensitivity of the instruments compared to the first generation LIGO detectors, enabling a large increase in the volume of the universe probed

"With the advent of Advanced LIGO, we anticipated researchers would eventually succeed at detecting unexpected phenomena, but these two detections thus far have surpassed our expectations," says NSF Director France A. Córdova. "NSF's 40-year investment in this foundational research is already yielding new information about the nature of the dark universe."

Advanced LIGO's next data-taking run will begin this fall. By then, further improvements in detector sensitivity are expected to allow LIGO to reach as much as 1.5 to 2 times more of the volume of the universe. The Virgo detector is expected to join in the latter half of the upcoming observing run.

LIGO research is carried out by the LIGO Scientific Collaboration (LSC), a group of more than 1,000 scientists from universities around the United States and in 14 other countries. More than 90 universities and research institutes in the LSC develop detector technology and analyze data; approximately 250 students are strong contributing members of the collaboration. The LSC detector network includes the LIGO interferometers and the GEO600 detector.

Virgo research is carried out by the Virgo Collaboration, consisting of more than 250 physicists and engineers belonging to 19 different European research groups: 6 from Centre National de la Recherche Scientifique (CNRS) in France; 8 from the Istituto Nazionale di Fisica Nucleare (INFN) in Italy; 2 in The Netherlands with Nikhef; the MTA Wigner RCP in Hungary; the POLGRAW group in Poland and the European Gravitational Observatory (EGO), the laboratory hosting the Virgo detector near Pisa in Italy.
-end-
The NSF leads in financial support for Advanced LIGO. Funding organizations in Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council, STFC) and Australia (Australian Research Council) also have made significant commitments to the project.

Several of the key technologies that made Advanced LIGO so much more sensitive have been developed and tested by the German UK GEO collaboration. Significant computer resources have been contributed by the AEI Hannover Atlas Cluster, the LIGO Laboratory, Syracuse University, the ARCCA cluster at Cardiff University, the University of Wisconsin-Milwaukee, and the Open Science Grid. Several universities designed, built, and tested key components and techniques for Advanced LIGO: The Australian National University, the University of Adelaide, the University of Western Australia, the University of Florida, Stanford University, Columbia University in the City of New York, and Louisiana State University. The GEO team includes scientists at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI), Leibniz Universität Hannover, along with partners at the University of Glasgow, Cardiff University, the University of Birmingham, other universities in the United Kingdom and Germany, and the University of the Balearic Islands in Spain.

MEDIA CONTACTS

For embargoed copies of the paper and media assets, as well as help arranging interviews, please contact:

MIT
Kimberly Allen
Director of Media Relations
Deputy Director, MIT News Office
617-253-2702 (office)
617-852-6094 (cell)
allenkc@mit.edu

Caltech
Whitney Clavin
Senior Content and Media Strategist
626-390-9601 (cell)
wclavin@caltech.edu

NSF
Ivy Kupec
Media Officer
703-292-8796 (Office)
703-225-8216 (Cell)
ikupec@nsf.gov

LIGO Scientific Collaboration
Mimi LaValle
External Relations Manager
Louisiana State University
225-439-5633 (Cell)
http://mlavall@lsu.edu

EGO-European Gravitational Observatory
Séverine Perus
Media Contact
severine.perus@ego-gw.it
Tel +39 050752325

Additional press contacts for help arranging interviews include:

GEO
Susanne Milde
Phone +49 331 583 93 55
Mobile: +49 172 3931349
milde@mildemarketing.de

UK Science and Technology Facilities Council
Terry O'Connor
+44 1793 442006
+44 77 68 00 61 84 (Cell)
terry.o'connor@stfc.ac.uk

Max Planck Institute for Gravitational Physics
Benjamin Knispel
Press Officer
+49 511 762 19104
benjamin.knispel@aei.mpg.de

CNRS -France
Véronique Étienne
Communication Office
Veronique.ETIENNE@cnrs-dir.fr
Tel. +33 1 44965137

Ana Poletto
apoletto@admin.in2p3.fr
Tel.+33 1 44964760

INFN-Italy
Antonella Varaschin
Communication Office
antonella.varaschin@presid.infn.it
Tel. +39 349 53 84 481

Eleonora Cossi
eleonora.cossi@presid.infn.it
Tel. +39 345 29 54 623

Nikhef Institute - The Netherlands
Vanessa Mexner
Communication Office
vanessam@nikhef.nl
Tel. +31 205925075

PAN - Poland
Agata Gozdzik
Communication Office
agata.gozdzik@pan.pl
Tel. +48 22 182 6601

MTA Wigner RCP - Hungary
Nora Szathmary
Communication Office
szathmari.nora@wigner.mta.hu
Tel.:+36 1 3922512

Massachusetts Institute of Technology

Related Black Holes Articles:

Supermassive black holes found in 2 tiny galaxies
U astronomers and colleagues have found two ultra-compact dwarf galaxies with supermassive black holes, the second and third such galaxies found to harbor the objects.
Stars born in winds from supermassive black holes
Observations using ESO's Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies.
Did LIGO detect black holes or gravastars?
After the first direct detection of gravitational waves that was announced last February by the LIGO Scientific Collaboration and made news all over the world, Luciano Rezzolla (Goethe University Frankfurt, Germany) and Cecilia Chirenti (Federal University of ABC in Santo André, Brazil) set out to test whether the observed signal could have been a gravastar or not.
New research reveals hundreds of undiscovered black holes
Computer simulations of a spherical collection of stars known as 'NGC 6101' reveal that it contains hundreds of black holes, until now thought impossible.
Chorus of black holes radiates X-rays
The NuSTAR mission is identifying which black holes erupt with the highest-energy X-rays.
Did the LIGO gravitational waves originate from primordial black holes?
Binary black holes recently discovered by the LIGO-Virgo collaboration could be primordial entities that formed just after the Big Bang, report Japanese astrophysicists.
A new look at the galaxy-shaping power of black holes
Data from a now-defunct satellite is providing new insights into the complex tug-of-war between galaxies, the hot plasma that surrounds them, and the giant black holes that lurk in their centers.
The energy spectrum of particles will help make out black holes
Scientists from MIPT, the Institute for Theoretical and Experimental Physics, and the National Research University Higher School of Economics have devised a method of distinguishing black holes from compact massive objects that are externally indistinguishable from one another.
Using gravitational waves to catch runaway black holes
Black holes are the most powerful gravitational force in the universe.
Black holes and measuring gravitational waves
The supermassive black holes found at the center of every galaxy, including our own Milky Way, may, on average, be smaller than we thought, according to work led by University of Southampton astronomer Dr.

Related Black Holes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".