Nav: Home

Bee vampire picks the right host to suck

June 15, 2016

EAST LANSING, Mich. --- New insights into the reproductive secrets of one of the world's tiniest and most destructive parasites - the Varroa mite - has scientists edging closer to regulating them.

"If you know your enemies better, you can come up with new ways of controlling them," said Michigan State University entomologist Zachary Huang, whose research explores the fertility of the notorious mite, a pest that is devastating honeybee populations worldwide. The mite sucks the blood of honeybees and transmits deadly viruses.

The Varroa mite's lifecycle consists of two phases: one where they feed on adult bees, called the phoretic phase, and a reproductive phase that takes place within a sealed honeycomb cell, where the mites lay eggs on a developing bee larva.

The MSU-led study, published in the current issue of Scientific Reports, shows that the mites clearly prefer to infest adult bees at mid-age, or during the nurse phase of a bee's lifecycle when they take care of larvae, rather than during the younger (newly-emerged) or older (forager) phases of an adult bee. The study also found that the physiological type of a host bee had significant effects on the mite's reproductive fitness and success later on.

"Our study clearly demonstrated that Varroa mites preferred nurses over the older and younger bees," said Huang, the study's lead author. "Further, we showed that feeding on different hosts gave them different reproductive outputs."

Mites chose bees in the nurse phase of their lifecycle - the nutritional prime of bee life - over their older and younger counterparts at significantly higher rates. Also, those who fed on nurses had the highest reproductive success rates and the lowest infertility rates.

Previous studies have shown that the mites can easily choose their reproductive hosts, but Huang's study shows that they can go one step further: the mites can correctly pick the most nutritious bees to suck blood from.

"This might seem very smart for the mites because they do not realize the reproductive advantage right away, but under natural selection this is rather easy to achieve." Huang said. "The mites who made the correct choice will have more babies and their genes will become more dominant over time."

The recent results have helped researchers zero in on mite reproductive and nutritional preferences and are a significant step in understanding the mysterious, parasitic relationship between the Varroa mite and the honeybee.

"This is an important step in understanding mite reproductive biology," Huang said. "We can utilize this information as a step toward finding ways to regulate them."

In future research, Huang will look to identify what precise factors the mites are relying on for their reproductive success.

"If they require a certain factor to have babies we can regulate that factor without affecting the bees - only the mites - and reduce their reproduction," Huang said. "Instead of killing them with a chemical, this could eventually lead to a more natural way of mite control and a better outlook for honeybees."

MSU entomologist Xianbing Xie and Zhijiang Zeng from Jiangxi Agricultural University joined Huang as coauthors of the study. Huang's research is supported in part by MSU AgBioResearch.
-end-
Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Michigan State University

Related Natural Selection Articles:

Ongoing natural selection against damaging genetic mutations in humans
Investigators report that, as a species, humans are able to keep the accumulation of damaging mutations in check because each additional mutation that's added to a genome causes larger, and larger consequences, decreasing an individual's ability to pass on genetic material.
HIV co-infection influences natural selection on M. tuberculosis
While M. tuberculosis has been evolving with humans for thousands of years, HIV co-infections create host immunological environments that this bacterium has not encountered before and could, therefore, be nudging it to evolve new characteristics.
The selection of archaeological research material should be re-evaluated
A systematically collected material produces a more exact image of the excavated objects.
Climate change altered the natural selection -- large forehead patch no longer a winner
In a new study, researchers at Uppsala University have found evidence of that climate change upends selection of face characteristics in the collared flycatcher.
How natural selection acted on 1 penguin species over the past quarter century
University of Washington biologist Dee Boersma and her colleagues combed through 28 years' worth of data on Magellanic penguins to search for signs that natural selection -- one of the main drivers of evolution -- may be acting on certain penguin traits.
More is better when it comes to online product selection
Retailers should take advantage of the unlimited retail space online and offer everything they sell.
Selection pressures push plants over adaption cliff
New simulations by researchers at the University of Warwick and UCL's Institute of Archaeology of plant evolution over the last 3000 years have revealed an unexpected limit to how far useful crops can be pushed to adapt before they suffer population collapse.
Long-term response to selection predictable regardless of genetic architecture
In their latest publication in the Proceedings of the National Academy of Sciences (PNAS) Tiago Paixao, Postdoc, and Nick Barton, Professor at the Institute of Science and Technology Austria, addressed the controversial role of gene interactions (or epistasis), where the effect of one gene is affected by the presence of other genes, in the response to selection for two extremely different scenarios of evolutionary mechanisms.
Applying parameter selection and verification techniques to an HIV model
Physical and biological models often have hundreds of inputs, many of which may have a negligible effect on a model's response.
Evolutionary 'selection of the fittest' measured for the first time
A difference of one hundredth of a percent in fitness is sufficient to select between winners and losers in evolution.

Related Natural Selection Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...