Nav: Home

Key compound for high-temperature superconductivity was found

June 15, 2016

A research group in Japan found a new compound H5S2 that shows a new superconductivity phase on computer simulation. Further theoretical and experimental research based on H5S2 predicted by this group will lead to the clarification of the mechanism behind high-temperature superconductivity, which takes place in hydrogen sulfide .

Superconductivity is the total disappearance of electrical resistance when an object is cooled below a definite temperature. If superconductor is used for electric wire, it becomes possible to carry electricity without loss. That's why superconductivity has been drawing attention as an important physical phenomenon for solving environmental and energy problems.

However, the superconducting critical temperature, the temperature at which superconductivity takes place, is so low that its practical realization is difficult. Last year, a striking news came out that H2S broke the record for superconducting critical temperature under high-pressure. However, the chemical composition ratio of sulfur and hydrogen and the crystal structure during the process in which superconductivity takes place have not been well understood.

A research group led by Takahiro Ishikawa, Specially Appointed Assistant Professor, and Katsuya Shimizu, Professor, at Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science, Osaka University, Tatsuki Oda, Professor at School of Mathematics and Physics, Kanazawa University, and Naoshi Suzuki, Professor at Faculty of Engineering Science, Kansai University predicted a new superconductivity phase of hydrogen sulfide (H5S2), which was presented at a pressure of 1.1 million bar on computer simulation. The superconducting critical temperature obtained from H5S2, whose calculated value was the same as the experimental value. This result may lead to the clarification of the mechanism behind high-temperature superconductivity, which takes place in hydrogen sulfide by further theoretical and experimental research based on H5S2.

Furthermore, by applying methods used and knowledge obtained by this group to other light element hydrides, it will become possible to establish guidelines for enhancing superconducting critical temperature to near room temperature.

This research was featured in the electronic version of Scientific Reports on Thursday, March 17, 2016
-end-


Osaka University

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
More Hydrogen News and Hydrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...