Nav: Home

New genetic research can significantly improve drug development

June 15, 2016

According to a new study published in the International Journal of Epidemiology this week, genetic research in large-scale prospective biobank studies can significantly improve the drug development pipeline and reduce costs.

New treatments are discovered by exploring biological pathways that cause disease but can be modified by drugs. The route from the basic biology to large-scale randomized trials in humans is long and expensive - estimated at over $1.2 billion to get one product to market. In part, that costs is because the route to a successful drug is littered with those that have fallen by the wayside at various points during development. However, a study of one such unsuccessful drug has pointed to a way that could reduce costs.

Lipoprotein associated phospholipase A2 (Lp-PLA2) circulates with cholesterol in the blood and high levels are associated with increased risk of cardiovascular disease, so inhibiting Lp-PLA2 might be beneficial. Darapladib, an inhibitor of Lp-PLA2, was developed by Human Genome Sciences which GlaxoSmithKline (GSK) bought for US$ 3 billion in 2012. But two large phase III trials of darapladib funded by GSK were disappointing failures. The investment in the Lp-PLA2 inhibitor did not pay off because the biological pathway turned out to be one that caused cardiovascular disease.

Researchers at the University of Oxford and the Chinese Academy of Medical Sciences joined forces with GSK to explore whether this disappointing result could have been predicted by using a genetic variant that mimics the drug effect. People with a non-functioning variant have lower levels of Lp-PLA2 so the idea is to see if these people have a lower risk of cardiovascular disease than those with functioning variants. In a study of over 90,000 participants in the prospective China Kadoorie Biobank (CKB) study, the association between this genetic variant and a range of cardiovascular and non-cardiovascular diseases was explored. This method is termed "Mendelian randomization" because it relies on way the play of chance determines the genetic variants inherited at conception, and allows nature to mimic randomised controlled trials.

The researchers found that people with a non-functioning genetic variant were not at lower risk of developing cardiovascular (and other non-cardiovascular) diseases - upholding the trial findings. Compared with the many steps in the traditional pathway to drug development (at a cost of several billion dollars) the availability of large scale biobanks make the cost of carrying out Mendelian randomization analyses trivial. This methodology is likely to be much more widely used to examine the causal nature of biological pathways involved in diseases before mounting large-scale trials in the future.

Study lead author Dr Iona Millwood, from the University of Oxford, said 'Our research used a genetic variant only found in East Asians, and demonstrates the value of prospective biobank studies with genetic data linked to health records, carried out in different global populations, to predict the potential benefits or harms of new drug targets.'

Professor Zhengming Chen, senior author and the principal investigator of the China Kadoorie Biobank at the University of Oxford, said 'CKB is a powerful resource. Our ongoing research includes measurement of thousands of functional genetic variants which may represent potential drug targets in different biological pathways, and we are using the same approach to assess a number of other important therapeutic targets.'

The study showed that genetics has a huge potential to improve the drug development pipeline and close collaborations between the pharmaceutical industry and academic researchers are likely to play an important role in future drug discovery and development, capitalising on the large prospective biobank studies already established.
-end-


Oxford University Press

Related Cardiovascular Disease Articles:

Is educational attainment associated with lifetime risk of cardiovascular disease?
Men and women with the lowest education level had higher lifetime risks of cardiovascular disease than those with the highest education level, according to a new study published by JAMA Internal Medicine.
Food policies could lower US cardiovascular disease rates
New research conducted by the University of Liverpool and partners shows that food policies, such as fruit and vegetable subsidies, taxes on sugar sweetened drinks, and mass media campaigns to change dietary habits, could avert hundreds of thousands of deaths from cardiovascular disease (CVD) in the United States.
Cardiovascular disease causes one-third of deaths worldwide
Cardiovascular diseases (CVD), including heart diseases and stroke, account for one-third of deaths throughout the world, according to a new scientific study that examined every country over the past 25 years.
Kidney disease is a major cause of cardiovascular deaths
In 2013, reduced kidney function was associated with 4 percent of deaths worldwide, or 2.2 million deaths.
Cardiovascular disease costs will exceed $1 trillion by 2035
A new study projects that by 2035, cardiovascular disease, the most costly and prevalent killer, if left unchecked, will place a crushing economic and health burden on the nation's financial and health care systems.
Prescribing drugs for cardiovascular disease prevention in the UK
Drugs such as statins that have the potential to prevent strokes and other types of cardiovascular disease have not been prescribed to a large proportion of people at risk in the UK, according to a research article by Grace Turner of the University of Birmingham, Birmingham, UK and colleagues published in PLOS Medicine.
Fatty liver disease contributes to cardiovascular disease and vice versa
For the first time, researchers have shown that a bi-directional relationship exists between fatty liver disease and cardiovascular disease.
More dietary calcium may lower risk of cardiovascular disease
In older people, higher dietary calcium intake may lower the risk of cardiovascular disease, but not of stroke and fracture, new research from South Korea suggests.
Renal hemodynamics and cardiovascular function in health and disease
The SRC will focus on unpublished work that is state-of-the-art in study of cardiovascular and renal disease and hypertension.
Cardiovascular disease in adult survivors of childhood cancer
For adult survivors of childhood cancer, cardiovascular disease presents at an earlier age, is associated with substantial morbidity, and is often asymptomatic.

Related Cardiovascular Disease Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...