Nav: Home

Diarrheal pathogen measures human body temperature

June 15, 2016

Using cutting-edge high-throughput sequencing methods, researchers have mapped all RNA structures of a diarrhoeal pathogen at once. In the process, they identified a number of temperature-responsive structures, so-called RNA thermometers. "To date, we only ever discovered individual RNA thermometers following a tedious search, and painstakingly analysed one after the other," says project manager Prof Dr Franz Narberhaus from Ruhr-Universität Bochum.

The results were reported by the team from Bochum and their colleagues at Helmholtz Center for Infection Research in Braunschweig and Leipzig University in the journal Proceedings of the National Academy of Sciences USA, short PNAS.

Folded RNA structures sense temperature

The fact that certain bacteria have the ability to identify their warm-blooded hosts by their body temperature has been known for several years; those include a close relative of the plague bacillus, namely Yersinia pseudotuberculosis, which was studied in the course of this project. In the process, bacteria use folded RNA structures that start to melt at a certain temperature, thus gene sequences are revealed that had been inaccessible. Those sequences can then be translated into proteins which control the progression of the disease.

New method established

In order to detect such cellular thermometers, the research team deployed a combination of biochemical RNA structure probing and high-throughput sequencing. Thus, the researchers mapped all 1,750 RNA structures contained in the bacterial cell at once. They performed the experiment at three different temperatures and generated a snapshot of RNA diversity in each instance.

"This is how we observed the dynamic modifications to RNA structures when the temperature was rising, for example from 25 to 37 degrees centigrade," elaborates Francesco Righetti, the PhD student in charge of this project at the Chair of Microbial Biology in Bochum.

"The approach we used is very time-consuming and expensive," says Braunschweig-based researcher Dr Aaron Nuss. "However, it offers enormous potential for scientists interested in the biological function of RNA structures." The method is universally applicable, regardless if bacteria, plant, animal or human cells are being studied.

Many temperature-responsive genes

"Our results demonstrate that a surprising number of genes of the diarrhoeal pathogen Yersinia pseudotuberculosis respond directly to the host's body temperature," says Franz Narberhaus. The researchers selected 20 genes for follow-up experiments; 16 of them were indeed temperature-controlled. They belong to different functional groups. Some are, for example, involved in the bacterial response to oxidative stress.

"It makes a lot of sense to activate such processes immediately after infection of the host, in order to face the defence mechanisms in the human gastrointestinal system," explains Prof Dr Petra Dersch, infection biologist from Braunschweig.

Current studies are meant to reveal if the newly identified RNA structures play a decisive role during infection. Moreover, the researchers intend to find out if active substances do exist capable of preventing the melting of RNA thermometers. They might be able to interfere with the infection process.
-end-


Ruhr-University Bochum

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
A chink in bacteria's armor
Scientists have untangled the structure of a recently discovered bacterial wall-building protein, found in nearly all bacteria.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.