Nav: Home

Tohoku University demonstrates sub-nanosecond operation of nonvolatile memory

June 15, 2016

The research group of Professor Hideo Ohno and Associate Professor Shunsuke Fukami of Tohoku University has demonstrated the sub-nanosecond operation of a nonvolatile magnetic memory device.

Recently, the concept of "Internet of Things" (IoT) - a giant network of connected devices, people and things - has been attracting a great deal of attention. Although its range of application is limited at this stage, it is expected that in the near future, IoT will be widely applied and will play important roles in fields such as security, automated driving, social infrastructure and disability aid.

An integrated circuit, or microcontroller unit, is the brain in the IoT society, where information is acquired, processed, and transmitted. Thus, development of device technologies to make integrated circuits ultralow-power and high-performance, or high-speed, is of great importance for the progress of the IoT society.

In terms of low-power, the use of nonvolatile memories is known to be effective.

On the other hand, in terms of high-performance, it has been difficult for the nonvolatile memories which are both currently available (commercialized) and under development (not commercialized yet) to achieve the speed comparable to the one realized with currently-used volatile static random access memories.

The research group at Tohoku University had previously announced that they had developed a new-structure nonvolatile magnetic memory device. The device has a three-terminal configuration, which is different from the two-terminal magnetic memory device that is just about to hit the market.

The device uses a new scheme of spin-orbit torque-induced magnetization switching, which has been predicted to be suitable for the fast control of magnetization.

Here, the group fabricated the developed new-structure device and successfully demonstrated 0.5-nanosecond operation with a sufficiently small current. The achieved speed is comparable to the highest class of static random access memories currently available.

The group members showed that the current required to switch the magnetization does not significantly change with the operation speed unlike the case for the conventional two-terminal magnetic memory devices where the required current increases as the speed increases.

They also addressed several issues of the spin-orbit torque-induced switching device. They achieved an external-field-free switching and a reduction of switching current density by improving the structure and material systems.

The present work is expected to pave the way for the realization of ultralow-power and yet high-performance microcontroller units that are indispensable for the future progress of IoT societies.
-end-
This work is supported by the ImPACT Program of CSTI, R&D Project for ICT Key Technology to Realize Future Society of MEXT, and JSPS KAKENHI Grant numbers 15K13964 and 15J04691.

Tohoku University

Related Research Group Articles:

International group of researchers assert importance of diversity in genomics research
Broadening diversity among participants in human genomics research will maximize its potential to discover causes and possible treatments of diseases, requiring thoughtful study design and methodological considerations, write members of an international genomics consortium in the journal Cell.
Group A strep genome research expedites vaccine development efforts
The global search for a group A streptococcal (Strep A) vaccine has narrowed after researchers identified a common gene signature in almost all global Strep A strains by sequencing thousands of genomes in a project spanning 10 years and more than 20 countries.
Group decisions: When more information isn't necessarily better
Modular -- or cliquey -- group structure isolates the flow of communication between individuals, which might seem counterproductive to survival.
Research identifies potential target for group a streptococcus vaccine
With the specter of increased resistance to antibiotics, the scientific community is feeling pressure to find new ways to treat bacteria like Group A Streptococcus.
At what size does a minority group become influential?
When a viewpoint is held by a minority, what size does that minority need to reach to hit a tipping point, where their view becomes widely accepted in the rest of the population?
More Research Group News and Research Group Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...