Nav: Home

Tohoku University demonstrates sub-nanosecond operation of nonvolatile memory

June 15, 2016

The research group of Professor Hideo Ohno and Associate Professor Shunsuke Fukami of Tohoku University has demonstrated the sub-nanosecond operation of a nonvolatile magnetic memory device.

Recently, the concept of "Internet of Things" (IoT) - a giant network of connected devices, people and things - has been attracting a great deal of attention. Although its range of application is limited at this stage, it is expected that in the near future, IoT will be widely applied and will play important roles in fields such as security, automated driving, social infrastructure and disability aid.

An integrated circuit, or microcontroller unit, is the brain in the IoT society, where information is acquired, processed, and transmitted. Thus, development of device technologies to make integrated circuits ultralow-power and high-performance, or high-speed, is of great importance for the progress of the IoT society.

In terms of low-power, the use of nonvolatile memories is known to be effective.

On the other hand, in terms of high-performance, it has been difficult for the nonvolatile memories which are both currently available (commercialized) and under development (not commercialized yet) to achieve the speed comparable to the one realized with currently-used volatile static random access memories.

The research group at Tohoku University had previously announced that they had developed a new-structure nonvolatile magnetic memory device. The device has a three-terminal configuration, which is different from the two-terminal magnetic memory device that is just about to hit the market.

The device uses a new scheme of spin-orbit torque-induced magnetization switching, which has been predicted to be suitable for the fast control of magnetization.

Here, the group fabricated the developed new-structure device and successfully demonstrated 0.5-nanosecond operation with a sufficiently small current. The achieved speed is comparable to the highest class of static random access memories currently available.

The group members showed that the current required to switch the magnetization does not significantly change with the operation speed unlike the case for the conventional two-terminal magnetic memory devices where the required current increases as the speed increases.

They also addressed several issues of the spin-orbit torque-induced switching device. They achieved an external-field-free switching and a reduction of switching current density by improving the structure and material systems.

The present work is expected to pave the way for the realization of ultralow-power and yet high-performance microcontroller units that are indispensable for the future progress of IoT societies.
This work is supported by the ImPACT Program of CSTI, R&D Project for ICT Key Technology to Realize Future Society of MEXT, and JSPS KAKENHI Grant numbers 15K13964 and 15J04691.

Tohoku University

Related Research Group Articles:

How listening to music in a group influences depression
New research published in Frontiers in Psychology takes a closer look at how music influences the mood in people suffering from depression, and examines what factors might affect whether listening to sad music in group settings provides social benefits for listeners, or if it rather reinforces depressive tendencies.
Bubble group dancing
A group of researchers at Zhejiang University recently discovered that a new bubbling mechanism may exist within the realm of physics.
Group works toward devising topological superconductor
A team led by Cornell physics associate professor Eun-Ah Kim has proposed a topological superconductor made from an ultrathin transition metal dichalcogenide that is a step toward quantum computing.
Discovered: Novel group of giant viruses
Viruses are thought to outnumber the microbes on Earth; both outnumber the stars in the Milky Way.
New research training group at Goethe University Frankfurt: 'Configurations of Film'
The first Research Training Group ever with a focus on film studies will be established at Goethe University Frankfurt.
Advances in Alzheimer's research by Dr. Caghan Kizil and his research group
The research team of Dr. Caghan Kizil at the DFG-Center for Regenerative Therapies Dresden -- Cluster of Excellence at the TU Dresden, achieved a major advance in Alzheimer's research.
Karin Everschor-Sitte establishes Emmy Noether independent junior research group TWIST
Theoretical physicist Dr. Karin Everschor-Sitte will be setting up an Emmy Noether independent junior research group at Johannes Gutenberg University Mainz with the aid of funding from the German Research Foundation.
Targeting the social networks of group violence
A strong network of friends may be just as big a factor in acts of group violence as having a charismatic leader or a savvy battle plan, according to a new study.
PCORI approves Group Health for $2.8 million research funding award
Treating hypertension is crucial to help prevent heart attacks and strokes.
UNIST welcomes Korean branch of Fraunhofer Research Group
UNIST, a South Korean university located in Ulsan, has welcomed the official launch of a Korean branch of Germany's Fraunhofer research group, called 'Fraunhofer Project Centre for Composites Research@UNIST (FPC@UNIST)' on May 10, 2016.

Related Research Group Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...