Nav: Home

UCLA scientists discover protective strategy against pesticide-linked Parkinson's disease

June 15, 2016

Exposure to a group of common pesticides, called dithiocarbamates, has long been associated with an increased risk of Parkinson's disease, although the mechanism by which the compounds exert their toxicity on the brain has not been completely understood. A new UCLA study sheds light on the toxicity of the compounds while also suggesting a strategy that may help protect against the disease.

The research focused on the fungicide ziram, which is used extensively in heavily agricultural areas such as California's Central Valley and which causes the loss of the main source of dopamine in the central nervous system. Loss of this source, called dopaminergic neurons, is associated with Parkinson's disease.

The pesticide-linked damage starts with ziram's ability to increase concentrations of a protein, called α-synuclein, which is abundant in the human brain. The α-synuclein proteins then aggregate, or clump together, harming neighboring neurons. This phenomenon also occurs in Parkinson's disease that is not due to pesticide exposures, making it a target for researchers searching for a broad treatment.

In the new study, conducted in zebrafish, researchers found that elimination of the α-synuclein protein protected the zebrafish against the ziram-induced loss of dopamine neurons. Because most cases of Parkinson's disease appear to be at least partially caused by environmental factors such as pesticide exposure, these findings support the approach that targeting α-synuclein could slow or stop the progression of Parkinson's in most people with the disease, said study lead author Jeff Bronstein, a professor of neurology and director of movement disorders at the David Geffen School of Medicine at UCLA.

"These findings add to the growing literature linking pesticide exposure and the development of Parkinson's disease and offers important insights into the mechanisms of ziram toxicity," Bronstein said. "A better understanding of the pathogenesis of Parkinson's disease will ultimately lead to new treatments and eventually a cure."

The study was published June 15 in the peer-reviewed journal Environmental Health Perspectives.

First, the researchers developed a model of Parkinson's in zebrafish -- the first such animal model of the disease -- and exposed them to ziram so that they lost dopamine. They found that the fish exposed to the ziram did not swim properly, evidence of a Parkinson's-like condition.

Then the researchers genetically knocked out the α-synuclein protein in the zebrafish and exposed them to ziram again. The ziram failed to make the fish sick, and the animals continued to swim properly.

Next, the researchers gave the non-protected zebrafish an investigational drug, CLRO1, being developed by UCLA scientists that breaks up the protein aggregates, or clumps, in Parkinson's patients. They found that the drug provided protection from the Parkinson's-like condition in the fish.

"Getting rid of the protein genetically or breaking up the aggregates with this drug protected against ziram toxicity," Bronstein said. "This is important - it establishes that environmental toxins work on same pathway that is in play in those genetically disposed to Parkinson's. Most important, we can use drugs being developed now on patients who get Parkinson's because of ziram exposure."

Going forward, Bronstein and his team will determine if other environmental substances are using the same mechanism to cause Parkinson's. They will also conduct further research on CLRO1 in preparation for clinical trials in human subjects.

About 70 percent of Parkinson's cases cannot be explained by genetics, Bronstein said, so the new finding could be vital to a large percentage of patients whose disease is not genetically caused.
-end-
The UCLA Department of Neurology, with over 100 faculty members, encompasses more than 20 disease-related research programs, along with large clinical and teaching programs. These programs cover brain mapping and neuroimaging, movement disorders, Alzheimer's disease, multiple sclerosis, neurogenetics, nerve and muscle disorders, epilepsy, neuro-oncology, neurotology, neuropsychology, headaches and migraines, neurorehabilitation, and neurovascular disorders. The department ranks in the top two among its peers nationwide in National Institutes of Health funding.

The study was supported by grants from National Institute of Environmental Health Sciences (P01ES016732, 5R21ES16446-2 and T32ES01545), the Veterans Administration Healthcare System, The Levine Foundation and the Parkinson Alliance.

University of California - Los Angeles Health Sciences

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
A protein makes the difference
It is well-established knowledge that blood vessels foster the growth of tumors.
Nuclear protein causes neuroblastoma to become more aggressive
Aggressive forms of neuroblastoma contain a specific protein in their cells' nuclei that is not found in the nuclei of more benign forms of the cancer, and the discovery, made through research from the University of Rochester Medical Center, could lead to new forms of targeted therapy.
How a protein could become the next big sweetener
High-fructose corn syrup and sugar are on the outs with calorie-wary consumers.
High animal protein intake associated with higher, plant protein with lower mortality rate
The largest study to examine the effects of different sources of dietary protein found that a high intake of proteins from animal sources -- particularly processed and unprocessed red meats -- was associated with a higher mortality rate, while a high intake of protein from plant sources was associated with a lower risk of death.
Protein in, ammonia out
A recent study has compiled and analyzed data from 25 previous studies.

Related Protein Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...