Nav: Home

Penn-led study resolves long-disputed theory about stem cell populations

June 15, 2016

Adult stem cells represent a sort of blank clay from which a myriad of different cell and tissue types are molded and as such are of critical importance to health, aging and disease. In tissues that turn over rapidly, such as the intestines, the self-renewing nature of stem cells and their susceptibility to cancer-causing mutations has led researchers to postulate that these cells also act as the cell of origin in cancers. The rarity of adult stem cells relative to their differentiated daughter cells has, however, made them historically difficult to study.

Over the years, researchers have hypothesized that the body maintains a population of mutation- and injury-resistant "reserve" stems cells that serve as a kind of dormant reservoir from which all other cells in a given tissue can be derived. Yet researchers have been conflicted about the precise identity of this population of cells.

Now, a team from the University of Pennsylvania has helped identify key characteristics that distinguish reserve stem cells from other stem cell populations that had been purported to have similar properties. The work, which employed single-cell gene expression analyses as well as other cutting-edge techniques, demonstrated that, in the intestines, reserve stem cells are a distinct population from so-called "label-retaining cells." The two populations were long believed to be one and the same.

"The devil is in the details," said senior author Christopher J. Lengner, an assistant professor in the Department of Biomedical Sciences in Penn's School of Veterinary Medicine and member of the Penn Institute for Regenerative Medicine. "You need an assay with single-cell sensitivity to address the potential heterogeneity in the cell population being study and thus to truly understand what these cells are. Now that we have that level of resolution, we can begin to ask questions that are relevant to questions such as how cancer is initiated, a process that starts in a single cell."

The paper appears in the journal Gastroenterology.

Lengner collaborated on the work with Ning Li, the paper's lead author, and Angela Nakauka-Ddamba, both of Penn Vet; John Tobias of the Penn Genome Analysis Core; and Shane T. Jensen of Penn's Wharton School.

The concept of the reserve stem cell arose in the mid-1970s, when biologist John Cairns formulated a theory that became known as the immortal strand hypothesis. His idea was that reserve stem cells remained immune from mutation by protecting the "mother strand" of DNA. During each cell division, the theory went, only the newly replicated strands of DNA were passed to the daughter cell, while the mother strand was maintained by the original stem cell.

In search of evidence to test this hypothesis, researchers conducted experiments in which they coaxed stem cells to incorporate a radioactive DNA label and then tracked it through cell divisions.

"What they saw then was after two months there were still rare cells that had retained this label," Lengner said. "They took this and some other experiments as evidence for the immortal strand hypothesis."

In other words, they believed that the cells that retained the label were the reserve stem cells that had held onto the mother strand of DNA.

A few decades later, the immortal strand hypothesis lost favor due to a lack of supporting evidence, but scientists explained the existence of the so-called label-retaining cells by noting that they could be a population of stem cells that divided only rarely. In the early 2000s, researchers used different labels, including green fluorescent protein, or GFP, fused to histone proteins that are stably incorporated into the chromatin, to track cell division. Using GFP had the added benefit of allowing researchers to prospectively isolate living cells using fluorescence-activated cell sorting and to subsequently analyze cell behavior and gene expression in the purified cell populations.

These types of experiments have been used even more recently to suggest that label-retaining cells are the same as reserve stem cells. These recent studies have indicated that at least some cells within the label-retaining population could give rise to all the different cell lineages in the intestine, just as a stem cell ought to.

The Penn team, however, decided to take a closer look at the label-retaining cells to see if they were truly the same thing as the indispensable reserve stem cells. To do so, they created an experimental system whereby they introduced GFP into young mice targeted to intestinal stem cells and then monitored the loss of fluorescence over three months. As observed previously, they found cells that retained the GFP label. Over the short term, these label-retaining cells were at and above the base of the intestinal crypt, an invagination at the base of the intestinal villi protected from the contents of the lumen. As more time passed, over one and then three months, the cells were found more rarely and became localized exclusively at the very base of the crypt.

"This was one piece of data that confused people," Lengner said, "because label-retaining cells and reserve stem cells can both be found roughly at the same position relative to the crypt base. This led people to speculate that they were one in the same."

To establish whether they were indeed the same, the Penn team bred two populations of mice together, one with the GFP marking label-retaining cells and another with reserve intestinal stem cells labeled with a genetic marker controlled by the Hopx gene in red. In the resulting offspring, they found a few cells with both labels, but the majority of labeled cells fell into mutually exclusive populations.

The researchers then used single-cell gene expression profiling to look for genes in the different cell populations. They found that the short-term label-retaining cells, reserve intestinal stem cells and a cell population known as active crypt base columnar intestinal stem cells, which are known to be susceptible to injury and mutation, each had distinctive gene expression profiles and were thus distinct populations.

Subjecting the various cell populations to radiation injury, they found that the majority of the Hopx-marked cells, or reserve intestinal stem cells, survived and entered the cell cycle to regenerate the damaged tissue, while short-term label-retaining cells did not. These cell populations had additional functional differences. While the majority of Hopx-marked stem cells were in the resting, or quiescent stage of the cell cycle, most label-retaining cells were arrested in the G1 phase of the cell cycle, characteristic of differentiated cells.

Finally, the researchers showed that Hopx-marked intestinal stem cells could form intestinal organoids in culture while long-term label-retaining cells could not, indicating that the long-term label-retaining cells were already terminally differentiated and could not revert back. Short-term label-retaining cells did form organoids but only about half as efficiently as the Hopx cells did.

"The conclusion we come to is that these short-term label-retaining cells are progeny of active stem cells and are undergoing a bifurcation to be one of two types of intestinal cells," Lengner said. "They retain some ability to revert to the stem cell state in culture, but they're not the radiation-resistant reserve stem cell that we and other groups have long studied."

The findings, which challenge decades of previous work, provide researchers with a new framework with which to study intestinal stem cells.

"It's like you're watching a soccer game and the players all have numbers on their backs," said Li. "If they didn't have those numbers, it would be very difficult to talk about the game and know whether the player I'm talking about is the same player you're talking about. It's the same with these cell populations."

Now that they've established that reserve stem cells are distinct from the label-retaining cells, the Penn researchers would like to put more emphasis on studying the true reserve stem cells to determine how cell populations in the intestine are organized and, eventually, perhaps to understand how these and other cell populations figure in the emergence of cancer.
The study was supported by the National Cancer Institute and National Institute of Diabetes and Digestive and Kidney Disorders.

University of Pennsylvania

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.