Nav: Home

Face recognition system 'K-Eye' presented by KAIST

June 15, 2017

Artificial intelligence (AI) is one of the key emerging technologies. Global IT companies are competitively launching the newest technologies and competition is heating up more than ever. However, most AI technologies focus on software and their operating speeds are low, making them a poor fit for mobile devices. Therefore, many big companies are investing to develop semiconductor chips for running AI programs with low power requirements but at high speeds.

A research team led by Professor Hoi-Jun Yoo of the Department of Electrical Engineering has developed a semiconductor chip, CNNP (CNN Processor), that runs AI algorithms with ultra-low power, and K-Eye, a face recognition system using CNNP. The system was made in collaboration with a start-up company, UX Factory Co.

The K-Eye series consists of two types: a wearable type and a dongle type. The wearable type device can be used with a smartphone via Bluetooth, and it can operate for more than 24 hours with its internal battery. Users hanging K-Eye around their necks can conveniently check information about people by using their smartphone or smart watch, which connects K-Eye and allows users to access a database via their smart devices. A smartphone with K-EyeQ, the dongle type device, can recognize and share information about users at any time.

When recognizing that an authorized user is looking at its screen, the smartphone automatically turns on without a passcode, fingerprint, or iris authentication. Since it can distinguish whether an input face is coming from a saved photograph versus a real person, the smartphone cannot be tricked by the user's photograph.

The K-Eye series carries other distinct features. It can detect a face at first and then recognize it, and it is possible to maintain "Always-on" status with low power consumption of less than 1mW. To accomplish this, the research team proposed two key technologies: an image sensor with "Always-on" face detection and the CNNP face recognition chip.

The first key technology, the "Always-on" image sensor, can determine if there is a face in its camera range. Then, it can capture frames and set the device to operate only when a face exists, reducing the standby power significantly. The face detection sensor combines analog and digital processing to reduce power consumption. With this approach, the analog processor, combined with the CMOS Image Sensor array, distinguishes the background area from the area likely to include a face, and the digital processor then detects the face only in the selected area. Hence, it becomes effective in terms of frame capture, face detection processing, and memory usage.

The second key technology, CNNP, achieved incredibly low power consumption by optimizing a convolutional neural network (CNN) in the areas of circuitry, architecture, and algorithms. First, the on-chip memory integrated in CNNP is specially designed to enable data to be read in a vertical direction as well as in a horizontal direction. Second, it has immense computational power with 1024 multipliers and accumulators operating in parallel and is capable of directly transferring the temporal results to each other without accessing to the external memory or on-chip communication network. Third, convolution calculations with a two-dimensional filter in the CNN algorithm are approximated into two sequential calculations of one-dimensional filters to achieve higher speeds and lower power consumption.

With these new technologies, CNNP achieved 97% high accuracy but consumed only 1/5000 power of the GPU. Face recognition can be performed with only 0.62mW of power consumption, and the chip can show higher performance than the GPU by using more power.

These chips were developed by Kyeongryeol Bong, a Ph. D. student under Professor Yoo and presented at the International Solid-State Circuit Conference (ISSCC) held in San Francisco in February. CNNP, which has the lowest reported power consumption in the world, has achieved a great deal of attention and has led to the development of the present K-Eye series for face recognition.

Professor Yoo said "AI - processors will lead the era of the Fourth Industrial Revolution. With the development of this AI chip, we expect Korea to take the lead in global AI technology."
-end-
The research team and UX Factory Co. are preparing to commercialize the K-Eye series by the end of this year. According to a market researcher IDC, the market scale of the AI industry will grow from $127 billion last year to $165 billion in this year.

The Korea Advanced Institute of Science and Technology (KAIST)

Related Smartphone Articles:

Inexpensive retinal diagnostics via smartphone
Retinal damage due to diabetes is now considered the most common cause of blindness in working-age adults.
Nanosensor can alert a smartphone when plants are stressed
MIT engineers can closely track how plants respond to stresses such as injury, infection, and light damage using sensors made of carbon nanotubes.
Smartphone apps not accurate enough to spot all skin cancers
Smartphone apps that assess the risk of suspicious moles cannot be relied upon to detect all cases of skin cancer, finds a review of the evidence published by The BMJ today.
Detecting mental and physical stress via smartphone
The team led by Professor Enrico Caiani of the Department of Electronics, Information and Bioengineering at Politecnico di Milano, Italy, has shown that it is possible to use our smartphones without any other peripherals or wearables to accurately extract vital parameters, such as heart beat rate and stress level.
Smartphone app reminds heart patients to take their pills
Heart patients using a smartphone app reminder are more likely to take their medication than those who receive written instructions, according to a study presented at the 45th Argentine Congress of Cardiology (SAC 2019).
Object identification and interaction with a smartphone knock
A KAIST team has featured a new technology, 'Knocker', which identifies objects and executes actions just by knocking on it with the smartphone.
Smartphone typing speeds catching up with keyboards
The largest experiment to date on mobile typing sheds new light on average performance of touchscreen typing and factors impacting the text input speed.
Which comes first: Smartphone dependency or depression?
New research suggests a person's reliance on his or her smartphone predicts greater loneliness and depressive symptoms, as opposed to the other way around.
Unlock your smartphone with earbuds
A University at Buffalo-led research team is developing EarEcho, a biometric tool that uses modified wireless earbuds to authenticate smartphone users via the unique geometry of their ear canal.
Are there health consequences associated with not using a smartphone?
Many studies have examined the health effects of smartphone abuse, but a new study looks at the sociodemographic features and health indicators of people who have a smartphone but do not use it regularly.
More Smartphone News and Smartphone Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.