Nav: Home

Raucous crystals

June 15, 2017

Some organic crystals jump around when heated up. This happens because of an extremely fast change in their crystal structure. In the journal Angewandte Chemie, scientists have now demonstrated that the crystals send out acoustic signals during this process, which may be useful in analyzing the characteristics of this phenomenon. The researchers demonstrated that this process is analogous to martensitic transitions observed in steel and some alloys.

Martensite is a form of steel made by quenching austenite, and gives its name to a particular type of phase transition. The rapid cooling of the austenite does not allow the atoms to adopt their preferred structure at the lower temperature. Instead, they move in unison to form the martensite lattice. In jumping crystals, a large number of atoms also change their lattice positions in concert. The high speed of this phenomenon and the fact that the crystals often explode have previously made it impossible to prove this theory, understand the details, and make use of this thermosalient effect, as it is known. The ability of the hopping crystals to very rapidly transform heat into movement or work is potentially useful for the development of artificial muscles or microscale robotic arms.

Starting from the assumption that the sudden release of the accumulated elastic tension in jumping crystals results in relatively strong acoustic waves, similar to seismic waves from an earthquake, the team from New York University Abu Dhabi, the German Electron Synchrotron (DESY) in Hamburg, and the Max Planck Institute for Solid State Research in Stuttgart got down to work. Led by Pance Naumov, the researchers chose to study crystals of the vegetable amino acid L-pyroglutamic acid (L-PGA). These jumping crystals change their crystal structure when heated to between 65 and 67 °C; they return to their starting structure upon cooling between 55.6 and 53.8 °C, as demonstrated by X-ray crystallography with synchrotron radiation.

As postulated, the crystals give off clear acoustic signals during the transition. These signals can be registered with a piezoelectric sensor. The number, amplitude, frequency, and form of the signals gave the researchers information about the dynamics and mechanism of the effect. The intensity and energy of the initial acoustic wave were significantly higher and the rise time shorter than for subsequent waves. The reason for this is the more efficient propagation of the elastic wave through the defect-free medium at the beginning of the phase transition. As the transition progresses, the number of microfissures increases, which decreases the elastic stress.

The phase boundary between the different crystal structures progresses at 2.8 m/s in L-PGA, which is several thousand times faster than other phase transitions. However, the two crystal structures are more similar to each other than expected. The transition involves expansions in two dimensions and a contraction in the third, all in the range of only 0.5-1.7 %.

"Our study shows that the jumping crystals are a class of materials analogous to inorganic martensite, and this could be of a tremendous significance for applications such as all-organic electronics" says Naumov. "Acoustic emission techniques finally deliver direct insight into these rapid transitions. Our results indicate that organic matter which is normally perceived as soft and brittle, and much harder materials, such as metals and metal alloys are, at least at the molecular level, not that different. The research into the organic solid state could allow us to gain a better understanding of the related macroscopic effects."
-end-
About the Author

Dr. Pance Naumov is an Associate Professor at the Division of Science and Mathematics at New York University's campus in Abu Dhabi, UAE. His main research interests are in materials science, and particularly smart materials for alternative energy conversion, biomimetic materials, bioluminesence, and petroleomics. He is a recipient of the Friedrich Wilhelm Bessel Research Award from the Alexander von Humboldt Foundation, and a young investigator award from the Asian and Ocenian Photochemistry Association, among other honors.

http://nyuad.nyu.edu/en/academics/faculty/pance-naumov.html

Wiley

Related Crystals Articles:

Transparency discovered in crystals with ultrahigh piezoelectricity
Use of an AC rather than a DC electric field can improve the piezoelectric response of a crystal.
New photonic liquid crystals could lead to next-generation displays
A new technique to change the structure of liquid crystals could lead to the development of fast-responding liquid crystals suitable for next generation displays -- 3D, augmented and virtual reality -- and advanced photonic applications such as mirrorless lasers, bio-sensors and fast/slow light generation, according to an international team of researchers from Penn State, the Air Force Research Laboratory and the National Sun Yat-sen University, Taiwan.
The secret behind crystals that shrink when heated
Scientists at Brookhaven Lab have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.
Engineered protein crystals make cells magnetic
If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields.
Appreciating the classical elegance of time crystals
Structures known as 'time crystals' -- which repeat in time as conventional crystals repeat in space -- have recently captured the interest and imagination of researchers across disciplines.
Making and controlling crystals of light
EPFL scientists have shown how light inside optical on-chip microresonators can be crystallized in a form of periodic pulse trains that can boost the performance of optical communication links or endow ultrafast LiDAR with sub-micron precision.
From crystals to glasses: a new unified theory for heat transport
Theoretical physicists from SISSA and the UCDavis lay brand new foundations to heat transport in materials, which finally allow crystals, polycrystalline solids, alloys, and glasses to be treated on the same solid footing.
How to trick electrons to see the hidden face of crystals
The 3D analysis of crystal structures requires a full 3D view of the crystals.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Probing semiconductor crystals with a sphere of light
Tohoku University researchers have developed a technique using a hollow sphere to measure the electronic and optical properties of large semiconducting crystals.
More Crystals News and Crystals Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.