Nav: Home

Researchers discover new antibiotic effective against drug-resistant bacteria

June 15, 2017



Scientists from Rutgers University-New Brunswick, the biotechnology company NAICONS Srl., and elsewhere have discovered a new antibiotic effective against drug-resistant bacteria: pseudouridimycin. The new antibiotic is produced by a microbe found in a soil sample collected in Italy and was discovered by screening microbes from soil samples. The new antibiotic kills a broad spectrum of drug-sensitive and drug-resistant bacteria in a test tube and cures bacterial infections in mice.

In a paper published in Cell today, the researchers report the discovery and the new antibiotic's mechanism of action.

Pseudouridimycin inhibits bacterial RNA polymerase, the enzyme responsible for bacterial RNA synthesis, through a binding site and mechanism that differ from those of rifampin, a currently used antibacterial drug that inhibits the enzyme. Because pseudouridimycin inhibits through a different binding site and mechanism than rifampin, pseudouridimycin exhibits no cross-resistance with rifampin, functions additively when co-administered by rifampin and, most important, has a spontaneous resistance rate that is just one-tenth the spontaneous resistance rate of rifampin.

Pseudouridimycin functions as a nucleoside-analog inhibitor of bacterial RNA polymerase, meaning that it mimics a nucleoside-triphosphate (NTP), the chemical "building block" that bacterial RNA polymerase uses to synthesize RNA. The new antibiotic binds tightly to the NTP binding site on bacterial RNA polymerase and, by occupying the NTP binding site, prevents NTPs from binding.

Pseudouridimycin is the first nucleoside-analog inhibitor that selectively inhibits bacterial RNA polymerase but not human RNA polymerases.

"Because the NTP binding site of bacterial RNA polymerase has almost exactly the same structure and sequence as the NTP binding sites of human RNA polymerases, most researchers thought it would be impossible for a nucleoside-analog inhibitor to inhibit bacterial RNA polymerase but not human RNA polymerases," said Richard H. Ebright, Board of Governors professor of chemistry and chemical biology and laboratory director at the Waksman Institute of Microbiology at Rutgers-New Brunswick, who led the research.

"But pseudouridimycin contains a side-chain that 'reaches' outside the NTP binding site and 'touches' an adjacent site that is present in bacterial RNA polymerase but not in human RNA polymerases and, as a result, it binds more tightly to bacterial RNA polymerase than to human RNA polymerases," Ebright said.

The fact that pseudouridimycin functions as a nucleoside-analog inhibitor explains the low rate of emergence of resistance to the compound.

"The new antibiotic interacts with essential residues of the NTP binding site that cannot be altered without losing RNA polymerase activity and bacterial viability," Ebright said. "Alterations of the NTP binding site that disrupt binding of the new antibiotic also disrupt RNA polymerase activity, resulting in dead bacteria, rather than resistant bacteria."

"Nucleoside-analog inhibitors that selectively inhibit viral nucleotide polymerases have had transformative impact on the treatment of HIV-AIDS and hepatitis C," said Stefano Donadio, CEO of NAICONS Srl., who co-led the research. "The anti-AIDS drugs Zidovudine, Videx, Zalcitabine, Lamivudine, and Viread are nucleoside-analog inhibitors, and the anti hepatitis-C drugs Solvadi and Harvoni are nucleoside-analog inhibitors."

"Nucleoside-analog inhibitors that selectively inhibit bacterial RNA polymerase could have a similarly transformative impact on the treatment of bacterial infections," Donadio said.

"The discovery also underscores the importance of natural products in providing new antibiotics," he said. "Microbes have had had billions of years to develop 'chemical weapons' to kill other microbes."
-end-
In addition to Ebright and Donadio, the research team included Yu Zhang and David Degen from Rutgers-New Brunswick; Sonia Maffioli, Giancarlo Del Gatto, Stefania Serina, Paolo Monciardini, and Carlo Mazzetti from NAICONS Srl.; Paola Guglierame from NeED Pharma Srl.; Gianpaolo Candiani, Giuseppe Facchetti and Petra Kaltofen from Vicuron Pharmaceuticals Italy Srl.; Thomas Carzaniga and Gianni Dehò from the University of Milan; and Alina Iulia Chiriac and Hans-Georg Sahl from the University of Bonn.

The study was supported by grant R37-GM041376 from the National Institute of General Medical Sciences at the National Institutes of Health, grants R01-AI104660 and U19-AI109713 from the National Institute of Allergy and Infectious Diseases at the NIH, and grants from the Italian Ministry of Research and Regione Lombardia. X-ray diffraction data for the study were collected at beamline F1 of the Cornell High Energy Synchrotron Source, which is supported by the National Science Foundation and the National Institute of General Medical Sciences at the NIH.

Rutgers University

Related Microbes Articles:

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.
Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.
Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.
Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.
Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.
Microbes help make the coffee
When it comes to processing coffee beans, longer fermentation times can result in better taste, contrary to conventional wisdom.
Space microbes aren't so alien after all
A new Northwestern University study has found that -- despite its seemingly harsh conditions -- the ISS is not causing bacteria to mutate into dangerous, antibiotic-resistant superbugs.
Nutrient-recycling microbes may feel the heat
While microbial communities are the engines driving the breakdown of dead plants and animals, little is known about whether they are equipped to handle big changes in climate.
Our microbes are starving, and that's a good thing
Our bodies house trillions of microbes, collectively known as the microbiome, which digest food, synthesize vitamins, bolster immune systems, and even maintain mental health.
Classifying microbes differently leads to discovery
Changing the way microbes are classified can reveal similarities among mammals' gut microbiomes, according to a new study published in mBio that proposes an alternative method for classifying microbes to provide insight into human and environmental health.
More Microbes News and Microbes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.