Nav: Home

Newly discovered cellular pathway may lead to cancer therapies

June 15, 2017

Scientists have discovered a new cellular pathway that can promote and support the growth of cancer cells. In a mouse model of melanoma, blocking this pathway resulted in reduction of tumor growth. The study, which appears in Science, offers a novel opportunity to develop drugs that could potentially inhibit this pathway in human cancer cells and help control their growth.

"We had been studying components of this pathway for several years," said senior author Dr. Andrea Ballabio, professor of molecular and human genetics at Baylor College of Medicine and Texas Children's Hospital in Houston, Texas, and director of the Telethon Institute of Genetics and Medicine in Naples, Italy. "We know that the pathway is important for normal cells to carry their activities as it is involved in regulating metabolism, that is, how cells process nutrients to obtain energy and how cells use energy to grow. In this study we wanted to learn more about how the pathway regulates its activity."

Pathways involved in cellular metabolism typically regulate themselves, meaning that some components of the pathway control each other's activities. "We suspected that the pathway was autoregulated, and we confirmed it in this study. Our experimental approaches showed that there is a feedback loop within the path that allows it to control itself."

An important pathway for normal cellular activities


Ballabio and his colleagues studied the role of the pathway in two normal cellular activities; how cells respond to physical exercise and how they respond to nutrient availability. In terms of physical exercise, the researchers determined that the self-regulating mechanism they discovered is essential for the body builder effect.

"Some athletes take the aminoacid leucine or a mixture of aminoacids immediately after exercising, which promotes protein synthesis that leads to muscle growth. This is the body builder effect," Ballabio said. "When we genetically engineered mice to lack the pathway, we lost the body builder effect."

The researchers had a group of normal mice and another of mice lacking the pathway. Both groups were set to exercise and fed leucine immediately after. While normal mice showed enhanced protein synthesis, the mice without the pathway did not.

"In healthy organisms, this pathway also allows cells to adapt more efficiently to nutrient availability," Ballabio said. "For example, when transitioning from a period of starvation to one in which food is available, cells need to switch from catabolism to anabolism. Starvation promotes catabolism - the breakdown of nutrients to obtain energy to function - and eating promotes anabolism - the buildup of molecules, such as proteins. The feedback we discovered mediates the switch from catabolism to anabolism, allowing organisms to adapt to food availability."

An important pathway for cancer growth


The scientists also studied the role this pathway might play in cancer cells. They discovered that overactivation of this pathway, which is observed in some types of cancer such as renal cell carcinoma, melanoma and pancreatic cancer, is important to promote and support the growth of cancer cells in culture and animal models.

"Most importantly, we demonstrated in our study that blocking the pathway resulted in reduction of tumor growth in an experimental model of human melanoma transplanted into mice," Ballabio said. "I am most excited about the future potential therapeutic applications of this discovery against cancer. Developing pharmacological treatments that interfere with this pathway might one day help stop tumor growth."

Rare disease discoveries can improve our understanding of common diseases


"Our lab focuses on rare genetic diseases, such as lysosomal storage genetic disorders, in which we originally studied this pathway," Ballabio said. "Then, we discovered that the pathway is also important in cancer. Our and other researchers' work on rare genetic diseases sometimes produces findings that can potentially be applicable to more common diseases, such as cancer."
-end-
For a complete list of the authors of this work and their affiliations, please refer to the published article.

This study was supported by grants from the Italian Telethon Foundation (TGM11CB6); European Research Council Advanced Investigator grant no. 250154 (CLEAR) and no. 341131 (InMec); U.S. National Institutes of Health (R01-NS078072); and the Associazione Italiana per la Ricerca sul Cancro (A.I.R.C.) IG 2015 Id 17639 and IG 2015 Id 17717.

Baylor College of Medicine

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...