Nav: Home

Hi-res view of protein complex shows how it breaks up protein tangles

June 15, 2017

PHILADELPHIA - Misfolded proteins are the culprits behind amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and other neurodegenerative brain disorders. These distorted proteins are unable to perform their normal functions and cause devastating problems for neurons.

Currently, there is no way to untangle the knotted mass of these proteins to treat disease.

A high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, has been acquired by James Shorter, PhD, an associate professor of Biochemistry and Biophysics in the Perelman School of Medicine at the University of Pennsylvania, and colleagues at the University of Michigan. The Shorter lab has been working on Hsp104 for close to a decade as a way to dismantle harmful protein clumps in disease. The team described their findings in Science this week.

Shorter teamed with colleagues at Michigan who use cutting-edge cryo-EM to provide the clearest image to date of Hsp104 in action. The Penn team provided the highly purified Hsp104 proteins for the study.

"This superb collaboration has yielded the highest resolution picture of Hsp104 caught in the act of processing a protein," Shorter said. "We can now see the moving parts of the Hsp104 complex and how we might tune it to optimally attack neurodegenerative disease proteins."

Hsp104 pulls in proteins it "processes" through a central channel, but scientists had not seen this at high resolution before this study. "With this more-in-focus view, we can see parts of its structure that we want to engineer to make better on-target therapeutics for neurodegenerative diseases," said JiaBei Lin, PhD, co-author and postdoctoral fellow in the Shorter lab.

Normally, Hsp104 is a "disaggregase" enyzme, which dissolves previously aggregated proteins and helps them acquire the correct shape. Although Hsp104 is found in most organisms on the planet, it has no analogue in humans or animals. Shorter asked whether it could be introduced as a drug to dismantle the protein clumps that characterize some diseases. In previous studies, Shorter's lab established that the natural version of Hsp104 is active against neurodegenerative proteins such as alpha-synuclein.

Hsp104 pulls out one polypeptide at a time from the tangles of protein fibrils. The six subunits of the Hsp104 complex hydrolyze ATP as it climbs up the polypeptide strand, which ultimately gets pulled out of the aggregate. Once released, the polypeptide can refold or be degraded.

The team has already made some tweaks to Hsp104 by mutating specific residues to enhance its activity. Working to break up TDP-43, FUS, and alpha-synuclein disease clumps, the reprogrammed Hsp104 pulls these proteins apart better.

"It appears to pull substrates through stepwise, like a ratchet," said senior study author Daniel Southworth, PhD, an assistant professor at the University of Michigan Life Sciences Institute. "We can see how the proteins in the machine rearrange between different states to grab onto the next site on the substrate."

"The study helps us to understand how cells can break apart toxic protein aggregates to restore protein function," Shorter said. "Finally having a clear picture of this remarkable nanomachine will empower our designs for therapeutic versions that work in humans."
-end-
This work was supported in part by the National Institute of General Medical Sciences (R01GM099836), a Muscular Dystrophy Association Research Award (MDA277268), the Life Extension Foundation, the Packard Center for ALS Research at Johns Hopkins University, and Target ALS.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $6.7 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2016 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2016, Penn Medicine provided $393 million to benefit our community.

University of Pennsylvania School of Medicine

Related Proteins Articles:

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.