Nav: Home

New genetic technique could help identify potential drug targets for malaria

June 15, 2017

Scientists have developed a new technique for investigating the effects of gene deletion at later stages in the life cycle of a parasite that causes malaria in rodents, according to a new study in PLOS Pathogens. The novel approach, developed by Upeksha Rathnapala and colleagues at the University of Melbourne, Australia, could enhance research into potential drug targets for malaria treatment.

New treatments are needed for malaria because of increasing drug resistance in the single-celled Plasmodium parasites that cause it. Metabolic processes in Plasmodium that are essential for its development could serve as potential new drug targets. However, the Plasmodium life cycle, which occurs in both mosquitos and host animals, makes it difficult to identify and study such processes.

In the new study, the researchers demonstrate their novel technique by focusing on an important metabolic process in Plasmodium berghei, which causes malaria in rodents and is commonly used in mouse studies of malaria. This metabolic process requires a gene known as the ferrochelatase (FC) gene, and it allows P. berghei to produce a chemical compound known as heme.

Heme synthesis is known to be essential for P. berghei development in mosquitos that transmit the parasite between rodent hosts, but it is not essential during a later stage in the host bloodstream. However, between these two stages, P. berghei undergoes a developmental phase in the host liver, and it has been unclear whether heme synthesis is essential at this stage.

Rathnapala and colleagues produced P. berghei parasites that are capable of expressing the FC gene and developing properly in mosquitos, but produce a mix of FC-expressing and FC-deficient parasites once they infect mouse liver cells. The scientists genetically engineered the parasites so that FC-deficient individuals would express fluorescent markers, allowing for easy identification.

The researchers found that FC-deficient parasites were unable to complete their liver development phase. This suggests that disrupting the heme synthesis pathway could be an effective way to target Plasmodium parasites in the liver. Such an approach would be prophylactic, since symptoms aren't apparent until the parasite leaves the liver and begins its bloodstream phase.

This same novel approach involving fluorescent markers could be adapted for other genes, allowing scientists to identify additional metabolic processes that are essential for Plasmodium development in host animals.

"The idea of tagging mutant genes with fluorescent proteins is a simple one but it allowed us to follow mutant parasites throughout the malaria life cycle and dissect their phenotypes in the liver stage, something that hasn't been easy to do for mutations that block mosquito development," the author explain. "Our analysis of heme biosynthesis shows the power of this simple method but It's a technique that can be easily applied to other genes and other malaria parasite species, greatly expanding the scope for investigating this immunologically important stage in the malaria parasite's life cycle."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006396

Citation: Rathnapala UL, Goodman CD, McFadden GI (2017) A novel genetic technique in Plasmodium berghei allows liver stage analysis of genes required for mosquito stage development and demonstrates that de novo heme synthesis is essential for liver stage development in the malaria parasite. PLoS Pathog 13(6): e1006396. https://doi.org/10.1371/journal.ppat.1006396

Funding: This study was funded by the Australian Research Council grant DP160104980, http://www.arc.gov.au, and the National Health and Medical Research Council grant APP1106213, http://www.nhmrc.gov.au, awarded to GIM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Malaria Articles:

Could there be a 'social vaccine' for malaria?
Malaria is a global killer and a world health concern.
Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
Fighting malaria through metabolism
EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite.
Should we commit to eradicate malaria worldwide?
Should we commit to eradicate malaria worldwide, asks a debate article published by The BMJ today?
Investigational malaria vaccine shows considerable protection in adults in malaria season
An investigational malaria vaccine given intravenously was well-tolerated and protected a significant proportion of healthy adults against infection with Plasmodium falciparum malaria -- the deadliest form of the disease -- for the duration of the malaria season, according to new findings published in the Feb.
Why malaria mosquitoes like people with malaria
Malaria mosquitoes prefer to feed -- and feed more -- on blood from people infected with malaria.
Malaria superbugs threaten global malaria control
A lineage of multidrug resistant P. falciparum malaria superbugs has widely spread and is now established in parts of Thailand, Laos and Cambodia, causing high treatment failure rates for the main falciparum malaria medicines, artemisinin combination therapies (ACTs), according to a study published today in The Lancet Infectious Diseases.
Considering cattle could help eliminate malaria in India
The goal of eliminating malaria in countries like India could be more achievable if mosquito-control efforts take into account the relationship between mosquitoes and cattle, according to an international team of researchers.
Seasonal malaria chemoprevention in Senegalese children lowers overall malaria burden
Giving preventive antimalarial drugs to children up to age 10 during active malaria season reduced the cases of malaria in that age group and lowered the malaria incidence in adults, according to a randomized trial carried out in Senegal and published in PLOS Medicine by researchers from the Université Cheikh Anta Diop, Senegal, the London School of Hygiene & Tropical Medicine, UK, and other collaborators.
How malaria fools our immune system
OIST researchers reconstruct the 3-D structure of a malaria protein in combination with human antibodies.

Related Malaria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".