Nav: Home

Global diet and farming methods 'must change for environment's sake'

June 15, 2017

Reducing meat consumption and using more efficient farming methods globally are essential to stave off irreversible damage to the environmental, a new study says.

The research, from the University of Minnesota, also found that future increases in agricultural sustainability are likely to be driven by dietary shifts and increases in efficiency, rather than changes between food production systems.

Researchers examined more than 740 production systems for more than 90 different types of food, to understand the links between diets, agricultural production practices and environmental degradation. Their results are published today in the journal Environmental Research Letters.

Lead author Dr Michael Clark said: "If we want to reduce the environmental impact of agriculture, but still provide a secure food supply for a growing global population, it is essential to understand how these things are linked."

Using life cycle assessments - which detail the input, output and environmental impact of a food production system - the researchers analysed the comparative environmental impacts of different food production systems (e.g. conventional versus organic; grain-fed versus grass-fed beef; trawling versus non-trawling fisheries; and greenhouse-grown versus open-field produce), different agricultural input efficiencies (such as feed and fertilizer), and different foods.

The impacts they studied covered levels of land use, greenhouse gas emissions (GHGs), fossil fuel energy use, eutrophication (nutrient runoff) and acidification potential.

Dr Clark said: "Although high agricultural efficiency consistently correlated with lower environmental impacts, the detailed picture we found was extremely mixed. While organic systems used less energy, they had higher land use, did not offer benefits in GHGs, and tended to have higher eutrophication and acidification potential per unit of food produced. Grass-fed beef, meanwhile, tended to require more land and emit more GHGs than grain-fed beef."

However, the authors note that these findings do not imply conventional practices are sustainable. Instead, they suggest that combining the benefits of different production systems, for example organic's reduced reliance on chemicals with the high yields of conventional systems, would result in a more sustainable agricultural system.

Dr Clark said: "Interestingly, we also found that a shift away from ruminant meats like beef - which have impacts three to 10 times greater than other animal-based foods - towards nutritionally similar foods like pork, poultry or fish would have significant benefits, both for the environment and for human health.

"Larger dietary shifts, such as global adoption of low-meat or vegetarian diets, would offer even larger benefits to environmental sustainability and human health."

Co-author Professor David Tilman said: "It's essential we take action through policy and education to increase public adoption of low-impact and healthy foods, as well the adoption of low impact, high efficiency agricultural production systems.

"A lack of action would result in massive increases in agriculture's environmental impacts including the clearing of 200 to 1000 million hectares of land for agricultural use, an approximately three-fold increase in fertilizer and pesticide applications, an 80 per cent increase in agricultural GHG emissions and a rapid rise in the prevalence of diet-related diseases such as obesity and diabetes.

Professor Tilman added: "The steps we have outlined, if adopted individually, offer large environmental benefits. Simultaneous adoption of these and other solutions, however, could prevent any increase in agriculture's environmental impacts. We must make serious choices, before agricultural activities cause substantial, and potentially irreversible, environmental damage."
-end-


IOP Publishing

Related Agricultural Articles:

Parasitic nematodes that cause greatest agricultural damage abandoned sex
The nematode worms that cause the world's most devastating crop losses have given up on sexual reproduction and instead rely on their large, duplicated genomes to thrive in new environments.
Key priorities for agricultural microbiomes identified
A coordinated effort to understand plant microbiomes could boost plant health and agricultural productivity, according to a perspective piece in the open access journal PLOS Biology.
Key research priorities for agricultural microbiomes identified
A coordinated effort to understand plant microbiomes could boost plant health and agricultural productivity, according to a new Perspective publishing March 28 in the open access journal PLOS Biology by Posy Busby of Oregon State University in Corvallis and colleagues at eight other research institutions.
Agricultural robot may be 'game changer' for crop growers, breeders
A robot under development at the University of Illinois automates the labor-intensive process of crop phenotyping, enabling scientists to scan crops and match genetic data with the highest-yielding plants.
USDA invests $4.8 million in university agricultural programs
The US Department of Agriculture's (USDA) National Institute of Food and Agriculture (NIFA) today announced 19 grants totaling $4,790,100 to support agricultural science programs at non-land-grant universities.
Pest control: Wicked weeds may be agricultural angels
Farmers looking to reduce reliance on pesticides, herbicides and other pest management tools may want to heed the advice of Cornell agricultural scientists: Let nature be nature -- to a degree.
More Washington state agricultural workers injured in hot weather
Warmer weather is linked to a rise in traumatic injuries for outdoor agricultural workers in a university and state Labor & Industry study that took place in central and eastern Washington state.
IU scientists discover 'supramolecule' that could help reduce nuclear, agricultural waste
A study from Indiana University published today in the German scientific journal Angewandte Chemie International Edition provides the first experimental proof for the existence of a chemical bond between two negatively charged molecules of bisulfate, or HSO4.
Making pesticide droplets less bouncy could cut agricultural runoff
By using a clever combination of two inexpensive additives to the spray, MIT researchers found they can drastically cut down on the amount of liquid that bounces off plants.
Hydraulic fracturing chemical spills on agricultural land need scrutiny
Hydraulic fracturing, a widely used method for extracting oil and gas from otherwise impenetrable shale and rock formations, involves not only underground injections composed mostly of water, but also a mixture of chemical additives.

Related Agricultural Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...