Nav: Home

Critical plant gene takes unexpected detour that could boost biofuel yields

June 15, 2018

OAK RIDGE, Tenn., June 15, 2018 - For decades, biologists have believed a key enzyme in plants had one function--produce amino acids, which are vital to plant survival and also essential to human diets.

But for Wellington Muchero, Meng Xie and their colleagues, this enzyme does more than advertised. They had run a series of experiments on poplar plants that consistently revealed mutations in a structure of the life-sustaining enzyme that was not previously known to exist.

Their discovery could alter the course of gene functional studies in plants and, if applied, it could squeeze more potential out of poplar as a renewable resource for making biofuels and bioproducts.

"At first, we thought it was a mistake, because the enzyme does not need to bind DNA to perform its known function," said Muchero, a biologist at the Department of Energy's Oak Ridge National Laboratory. "We repeated the experiment multiple times and kept seeing evidence in the data that the same gene involved in making amino acids also regulates the function of genes involved in producing lignin."

"This regulation is happening at a higher level in the plant's overall biological system," he added.

They found that poplar plants with certain mutations created unexpectedly low levels of lignin across different environments and tree ages.

Lignin fills spaces in plant cell walls to provide sturdiness. Muchero and his team study the genetics of poplar as part of the lab's Center for Bioenergy Innovation, or CBI, to develop methods to grow modified varieties with low lignin content. Less lignin makes plants easier to breakdown during the industrial poplar-to-biofuels process.

Based on its known function, the only strategy to reduce lignin production using this amino acid-producing enzyme would be to slow down its biological activity.

"That approach would be lethal," Muchero said. "In fact, it is the recipe used in common herbicides."

As they continued their research, the scientists noted the amino acid-producing enzyme deviated from its anticipated journey through the plant's cells seeking out chloroplasts, which contain chlorophyll, the molecule that absorbs energy from sunlight, giving plants their green color and capturing carbon dioxide through photosynthesis.

Instead, their work revealed something unexpected: the additional section of the enzyme allowed the enzyme to enter the nucleus, which is the plant cell's brain center, and "moonlight" as a DNA-binding regulator of gene expression.

Discovering the direct connection opens new opportunities to tweak how lignin is produced in poplar without impacting other biological processes that could kill the plant.

"This enzyme's unique behavior contrasts with conventional wisdom in the plant community," Muchero said. "While we do not know how this new function came about in poplar, we now know that this enzyme exhibits the same behavior in other plant species."

The new insights will help support ORNL industry partners GreenWood Resources and Forage Genetics International who have licensed the poplar gene technology for separate applications, but each with the common goal of breeding plants with modified lignin content.

"This discovery has enabled the new Center for Bioenergy Innovation to rationally design plants with either increased or decreased lignin," said Jerry Tuskan, CBI director at ORNL.

"Modified lignin in plants can lead to valorization of lignin and displacement of petroleum as a precursor for plastics," he added. "One day, drinking bottles or plastic toys may come from poplar plants."

The team published their findings in The Plant Cell journal. Coauthors of the paper titled, "A 5-enolpyruvylshikimate 3-phosphate synthase functions as a transcriptional repressor in Populus," included ORNL's Meng Xie, Wellington Muchero, Anthony C. Bryan, Kelsey Yee, Timothy J. Tschaplinski, Raja S. Payyavula, Nancy Engle, Sara S. Jawdy, Lee E. Gunter, Olivia Thompson, Udaya Kalluri, Miguel Rodriguez, Kai Feng, Jin-Gui Chen and Gerald A. Tuskan.
-end-
Additional coauthors were from the University of Tennessee, Knoxville; the DOE Joint Genome Institute, the University of North Texas, the National Renewable Energy Laboratory, West Virginia University, ArborGen Inc. and HudsonAlpha Institute.

This research was led by the lab's BioEnergy Science Center, and continues under the Center for Bioenergy Innovation, a new DOE Bioenergy Research Center at ORNL supported by the DOE Office of Science.

Genome resequencing and transcriptome sequencing was conducted by the DOE Joint Genome Institute, a DOE Office of Science user facility. The reference poplar genome, as well as tools for plant genome and gene family data and analysis, are available on its plant portal Phytozome (phytozome.jgi.doe.gov).

ORNL is managed by UT-Battelle for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

DOE/Oak Ridge National Laboratory

Related Genetics Articles:

Mapping millet genetics
New DNA sequences will aid in the development of improved millet varieties
Genetics to feed the world
A study, published in Nature Genetics, demonstrated the effectiveness of the technology known as genomic selection in a wheat improvement program.
Genetics researchers find new neurodevelopmental syndrome
Researchers have identified a gene mutation that causes developmental delay, intellectual disability, behavioral abnormalities and musculoskeletal problems in children.
The genetics of cancer
A research team has identified a new circular RNA (ribonucleic acid) that increases tumor activity in soft tissue and connective tissue tumors.
New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.
Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.
New insights into genetics of fly longevity
Alexey Moskalev, Ph.D., Head of the Laboratory of Molecular Radiobiology and Gerontology Institute of Biology, and co-authors from the Institute of biology of Komi Science Center of RAS, Engelgard's Institute of molecular biology, involved in the study of the aging mechanisms and longevity of model animals announce the publication of a scientific article titled: 'The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax' in Frontiers in Genetics - a leading open science platform.
Some personal beliefs and morals may stem from genetics
Penn State researchers found that while parents can help encourage their children to develop into responsible, conscientious adults, there is an underlying genetic factor that influences these traits, as well.
X chromosome: how genetics becomes egalitarian
In cell biology, men and women are unequal: men have an X chromosome, while women have two.
The link between obesity, the brain, and genetics
Clinicians should consider how the way we think can make us vulnerable to obesity, and how obesity is genetically intertwined with brain structure and mental performance, according to new research.
More Genetics News and Genetics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab