Nav: Home

Scientists predict a new superhard material with unique properties

June 15, 2018

Chemists from Russia and China have predicted a new superhard material that can be used in drilling, machine building and other fields. The new tungsten boride they discovered outperforms the widely used 'pobedit' ? a hard tungsten carbide and cobalt composite material with artificial diamond interspersing. The results of their study were published in the reputable scientific journal, The Journal of Physical Chemistry Letters. Superhard substances have a broad scope of application spanning well drilling, machine building, metalworking, defense industry, surgery and many other fields. The hardest known material, diamond is an unaffordable luxury in many applications. Its distant competitor, pobedit, has remained unrivaled for the last 80 years. Developed in the 1930s, it was used during the Second World War to make anti-tank shell caps (the word 'pobedit' is actually derived from the Russian 'pobeda' which means victory) and has been used for decades to manufacture drill bits for the drilling rigs. Harder materials either require higher-pressure synthesis or have much lower fracture toughness.

A team of Skoltech scientists led by Professor Artem Oganov used their USPEX evolutionary algorithm to predict a new material, WB5, that can be synthesized at normal pressure and can successfully compete with pobedit in the two most essential parameters ? hardness and fracture toughness ? which are 50% higher and 20% lower, respectively, for WB5 as compared to pobedit. The new material is a previously unknown compound that can be easily obtained under normal conditions. The Skoltech scientists performed their study within the framework of Gazprom Neft's large-scale project aimed at creating new materials for drilling applications.

"Before we discovered the new material, we had studied a lot of systems on the computer, trying to predict stable chemical compounds and calculate their properties. These were quite interesting substances, although they could hardly compete with pobedit. At some point I thought we would never beat pobedit which has stood its ground for almost a century ? and for good reason. But suddenly we saw a glimmer of hope and soon found a unique compound, WB5," says the study lead Artem Oganov.

"The tungsten-boron system has been the subject of a multitude of experimental and theoretical studies, and it is surprising that this compound has not been discovered till now," says the first author Dr. Alexander Kvashnin.
-end-


Moscow Institute of Physics and Technology

Related Diamond Articles:

Researchers teleport information within a diamond
Researchers from the Yokohama National University have teleported quantum information securely within the confines of a diamond.
News from the diamond nursery
Unlike flawless gems, fibrous diamonds often contain small saline inclusions.
Nanoscale thermometers from diamond sparkles
The development of a novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale will have immediate applications for both industry and fundamental scientific research, scientists say.
Unprecedented insight into two-dimensional magnets using diamond quantum sensors
For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale.
Diamond doves do not optimize their movements for flexible perches
The diamond dove may preferentially select large, stiff materials for takeoff and landing sites, according to a study published on July 25 in the open-access journal PLOS ONE.
Tunable diamond string may hold key to quantum memory
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the University of Cambridge engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip.
How to bend and stretch a diamond
Brittle diamond can turn flexible and stretchable when made into ultrafine needles, researchers at MIT and elsewhere have discovered.
World's hardest material, diamond, is flexible
Discovery by NTU's Professor Subra Suresh and his international research team that diamonds can be stretched by 9 percent without breaking.
Diamond-based circuits can take the heat for advanced applications
When power generators transfer electricity, they lose almost 10 percent of the generated power.
USTC reports diamond ring architecture of a protein complex
Professor CAI Gang from USTC and Professor Jacques Côté's team reports the 4.7 Å structure of the yeast NuA4/TIP60 complex, which elucidates the detailed architecture and molecular interactions between NuA4 subunits.
More Diamond News and Diamond Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab