New compound as effective as FDA-approved drugs against life-threatening infections

June 15, 2018

WEST LAFAYETTE, Ind. - Purdue University researchers have identified a new compound that in preliminary testing has shown itself to be as effective as antibiotics approved by the Food and Drug Administration to treat life-threatening infections while also appearing to be less susceptible to bacterial resistance.

The compound, called F6, has been potent against antibiotic-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), which is often found in hospitals and other health care settings, and vancomycin-resistant Staphylococcus aureus (VRSA), with vancomycin long considered a drug of last resort. The compound was tested against clinical isolates.

"This is very exciting," said Herman Sintim, drug discovery professor in Purdue's Department of Chemistry. "We are not the first to report of a new molecular entity that killed these drug-resistant pathogens. But what is unique about the compound that we found is that when we tried to generate resistance in the lab, we couldn't."

The results of the study were published Friday in the European Journal of Medicinal Chemistry..

Antibiotic resistance is a growing public health crisis. The World Health Organization has deemed antibiotic resistance one of the three greatest threats to human health because bacteria are becoming increasingly resistant and too few treatments are being developed. The Centers for Disease Control and Prevention reports that at least 2 million people a year in the United States become infected with bacteria resistant to antibiotics and at least 23,000 people die a year as a result. Studies have estimated that drug-resistant infections could be responsible for 10 million deaths a year worldwide by 2050.

Purdue University researchers have developed a compound called F6 that is 16 times more potent than the closely related F6-15, highlighting the importance of piperidine modification on antibacterial activity. (Image provided) Download image

Pharmaceutical companies have been reluctant to invest in antibiotics because it typically costs millions of dollars to develop a drug and the probability of bacterial resistance is high.

Purdue researchers identified F6 by screening a chemical library for compounds with antibacterial activity. They tried to force bacteria resistance on F6, performing experiments to evaluate the ability of MRSA USA400 to develop resistance to F6 in vitro.

"The idea is that if you keep adding increasing concentrations to bacteria and then you keep regrowing the bacteria, after so many cycles you are going to develop resistance," Sintim said. "Scientists do this to figure out whether whatever they have created develops resistance quickly."

The minimal inhibitory concentration, or MIC, remained unchanged for F6 over nine passages and doubled on the10th passage. It then remained unchanged up to the 14th passage during a two-week period. By comparison, the MIC of the antibiotic ciprofloxacin tripled after the eighth passage and continued to rapidly increase to more than 2,000-fold by the 14th passage.

"We are not saying there will never be resistance to the F6 molecule or analogs thereof. What we are saying is that here is a new molecule that works and when we try to force resistance we couldn't generate resistance," Sintim said.

F6, which is nontoxic to humans and other mammals, works against bacteria in a group known as Gram-positive, but not against those that are Gram-negative. F6 was effective against MRSA, VRSA, Enterococcus faecalis, which lives in the human gut, vancomycin-resistant Enterococcus (VRE) and Listeria monocytogenes, often associated with unpasteurized dairy products.

Testing on mice also indicated F6 was as effective as fusidic acid in treating a wound infected with MRSA, further confirming its potent antibacterial effect.

The Purdue researchers will now begin to make derivatives of F6 to see if they might be even more effective. They are working with the Purdue Office of Technology Commercialization to look for partners to help further develop this exciting new molecular entity.
-end-
About Purdue Office of Technology Commercialization

The Purdue Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities. For more information about funding and investment opportunities in startups based on a Purdue innovation, contact the Purdue Foundry at foundry@prf.org. For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at innovation@prf.org. Purdue Research Foundation contact: Tom Coyne, 765-588-1044, tjcoyne@prf.org Source: Herman Sintim, hsintim@purdue.edu

Note to Journalists: A copy of the research paper is available from Tom Coyne, 765-588-1044, tjcoyne@prf.org

ABSTRACT

N-(1,3,4-oxadiazol-2-yl)benzamide analogs, bacteriostatic agents against methicillin- and vancomycin-resistant bacteria

Clement Opoku-Temeng1, 2, §, George A. Naclerio1, §, Haroon Mohammad3, Neetu Dayal1, Nader S. Abutaleb3, Mohamed N. Seleem3 and Herman O. Sintim1*

1Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.

2Graduate Program in Biochemistry, University of Maryland, College Park, MD 20742.

3Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA.


§ Equal contribution


*Corresponding author. Email: hsintim@purdue.edu Various reports of multidrug-resistant bacteria that are immune to all available FDA-approved drugs demand the development of novel chemical scaffolds as antibiotics. From screening a chemical library, we identified compounds with antibacterial activity. The most potent compounds, F6-5 and F6 inhibited growth of various drug-resistant Gram-positive bacterial pathogens at concentrations ranging from 1 μg/mL to 2 μg/mL. Both compounds were active against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate and vancomycin-resistant S. aureus (VISA and VRSA respectively) and vancomycin-resistant Enterococcus faecalis (VRE). Resistance generation experiments revealed that MRSA could develop resistance to the antibiotic ciprofloxacin but not to F6. Excitingly, F6 was found to be non-toxic against mammalian cells. In a mouse skin wound infection model, F6 was equipotent to the antibiotic fusidic acid in reducing MRSA burden.

Purdue University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.