Nav: Home

Electronic skin stretched to new limits

June 15, 2018

An electrically conductive hydrogel that takes stretchability, self-healing and strain sensitivity to new limits has been developed at KAUST. "Our material outperforms all previously reported hydrogels and introduces new functionalities," says Husam Alshareef, professor of materials science and engineering.

Smart materials that flex, sense and stretch like skin have many applications in which they interact with the human body. Possibilities range from biodegradable patches that help wounds heal to wearable electronics and touch-sensitive robotic devices.

The material is a composite of the water-containing hydrogel and a metal-carbide compound known as MXene. As well as being able to stretch by more than 3400 percent, the material can quickly return to its original form and will adhere to many surfaces, including skin. When cut into pieces, it can quickly mend itself upon reattachment.

"The material's differing sensitivity to stretching and compression is a breakthrough discovery that adds a new dimension to the sensing capability of hydrogels," says first author, Yizhou Zhang, a postdoc in Alshareef's lab.

This new dimension may be crucial in applications that sense changes in the skin and convert them into electronic signals. A thin slab of the material attached to a user's forehead, for example, can distinguish between different facial expressions, such as a smile or a frown. This ability could allow patients with extreme paralysis to control electronic equipment and communicate.

Strips of the material attached to the throat have impressive abilities to convert speech into electronic signals. This might allow people with speech difficulties to be clearly heard.

"There is real potential for our material in various biosensing and biomedical applications," says co-author Kanghyuck Lee.

More straightforward and extremely useful medical possibilities include flexible wound coverings that can release drugs to promote healing. These could be applied internally, on diseased organs, in addition to adhering externally to skin. The team also envisions developing a smart material that could monitor the volume and shape of an organ and vary drug release according to signals produced.

An ideal potential would be to combine both medical sensing and therapy. Other exciting possibilities lie in robotics, where the material could serve in touch-sensitive finger-like extensions for machinery, for example.

There are also anticounterfeiting possibilities, with slabs of the material and integrated electronics proving highly sensitive at detecting signatures as they are written.

The KAUST team have a long list of possible applications that can now be further explored and developed. "There is great potential for commercialization," Alshareef concludes.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Hydrogel Articles:

Micron-sized hydrogel cubes show highly efficient delivery of a potent anti-cancer drug
Researchers at the University of Alabama at Birmingham and Texas Tech University Health Sciences Center have developed micro-cubes that can sponge up a hydrophobic anti-cancer drug and deliver it to cancer cells.
3-D-printable implants may ease damaged knees
A cartilage-mimicking material created by researchers at Duke University may allow surgeons to 3-D print knee menisci or other replacement parts that are custom-shaped to each patient's anatomy.
Rabbits' detached retina 'glued' with new hydrogel
A newly developed elastic gel administered in liquid form and shown to turn jellylike within minutes after injection into rabbits' eyes to replace the clear gelatinous fluid inside their eyeballs, may help pave the way for new eye surgery techniques, says an international team of researchers led by Japanese scientists.
Transparent gel-based robots can catch and release live fish
Engineers at MIT have fabricated transparent, gel-based robots that move when water is pumped in and out of them.
Skin cells 'crawl' together to heal wounds treated with unique hydrogel layer
A team led by Professor Milica Radisic in U of T Engineering has demonstrated for the first time that their peptide-hydrogel biomaterial prompts skin cells to 'crawl' toward one another, closing chronic, non-healing wounds often associated with diabetes, such as bed sores and foot ulcers.
More Hydrogel News and Hydrogel Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...