The benefits of slowness

June 15, 2020

Wrinkles, furrows, spots: a person's aging process is accompanied by tell-tale signs on their face. Researchers from the Institute for Neural Computation at Ruhr-Universität Bochum (RUB) have developed an algorithm that interprets these features very reliably. It makes it possible to estimate the age and ethnicity of people so accurately that it catapulted RUB researchers to the top of the league table worldwide for a while. The RUB team published its report in the journal Machine Learning from May 2020.

The system has learned to estimate

"We're not quite sure what features our algorithm is looking for," says Professor Laurenz Wiskott from the Institute for Neural Computation. This is because the system has learned to assess faces. The successful algorithm developed by the Bochum-based researchers is a hierarchical neural network with eleven levels. As input data, the researchers fed it with several thousand photos of faces of different ages. The age was known in each case. "Traditionally, the images are the input data and the correct age is the target fed into the system, which then tries to optimise the intermediate steps to assess the required age," explains lead author Alberto Escalante.

However, the researchers from Bochum chose a different approach. They input the many photos of faces sorted by age. The system then ignores the features that vary from one picture to the next and takes solely those features into consideration that change slowly. "Think of it as a film compiled of thousands of photos of faces," explains Laurenz Wiskott. "The system fades out all features that keep changing from one face to the next, such as eye colour, the size of the mouth, the length of the nose. Rather, it focuses on features that slowly change across all faces." For example, the number of wrinkles slowly but steadily increases in all faces. When estimating the age of the people pictured in the photos, the algorithm is only just under three and a half years off on average. This means that it outperforms even humans, who are real experts in face recognition and interpretation.

The system also recognises ethnic origins

The slowness principle also enabled it to reliably identify ethnic origin. The images were presented to the system sorted not only by age, but also by ethnicity. Accordingly, the features characteristic of an ethnic group didn't change quickly from image to image; rather, they changed slowly, albeit by leaps and bounds. The algorithm estimated the correct ethnic origin of the people in the photos with a probability of over 99 percent, even though the average brightness of the images was standardised and, consequently, skin colour wasn't a significant marker for recognition.
-end-
Funding

Alberto Escalante was funded through a joint grant by the German Academic Exchange Service and the National Council of Science and Technology of Mexico.

Original publication

Alberto N. Escalante, Laurenz Wiskott: Improved graph-based SFA: information preservation complements the slowness principle, in: Machine Learning, 2020, DOI: 10.1007/s10994-019-05860-9

Press contact

Prof. Dr. Laurenz Wiskott
Neural Computation Institute
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 27997
Email: laurenz.wiskott@rub.de

Ruhr-University Bochum

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.