Exposure to air pollution impairs cellular energy metabolism

June 15, 2020

Exposure to air particulate matter impairs the metabolism of olfactory mucosal cells, according to a recent study from the University of Eastern Finland. The results can contribute to a better understanding of how air pollutants may harm brain health, as the olfactory mucosa can act as a key pathway to the brain.

In the last decade, the adverse effects of ambient air pollutants, including particulate matter, on the central nervous system is increasingly reported by epidemiological, animal and post-mortem studies. Exposure to air pollutants has been associated with neurodegenerative disorders, among other things. The association of air pollutant exposure with deteriorating brain health is speculated to be driven by particulate matter entry via the olfactory mucosa, a neural tissue located at the upper part of the nasal cavity. The olfactory mucosa consists of a mixture of diverse cell types that are important for the sense of smell, as the only neural tissue outside of the brain. It acts as a first line of defence against inhaled agents, including air pollutants. How air pollutant exposure affects this key brain entry site remains elusive.

The original research article published in Particle and Fibre Toxicology by the research group of Associate Professor Katja Kanninen from the University of Eastern Finland, sheds light on how exposure to particulate matter impacts the function of the human olfactory mucosa. The study was carried out with a new cellular model based on primary human olfactory mucosal cells.

Using sophisticated functional measurements and transcriptomic analyses, the researchers found that particulate matter exposure causes critical impairment in the metabolism of olfactory mucosal cells. These functions of mitochondria, the cellular organelles responsible for energy production, are disturbed by air pollutants. The researchers also identified the mitochondria-targeted NPTX1 gene, which has been shown previously to be associated with brain disorders, as a key driver of mitochondrial dysfunction upon particulate matter exposure.

According to Associate Professor Kanninen, the research carried out at the University of Eastern Finland may provide important insight into the effects of harmful environmental agents on the brain.

"Given the importance of the nasal cavity as a potential gateway to the brain by particles and external invaders, I believe that more studies should focus on discovering how exposure to environmental agents and factors affects the olfactory mucosa. This may one day lead to new ways of limiting the adverse health effects of airborne particle exposure," Associate Professor Kanninen notes.
For further information, please contact: Katja Kanninen, Associate Professor, University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, tel. +358-46-9210065, katja.kanninen (a) uef.fi

Original publication (Open Access): Chew S, Lampinen R, Saveleva L, Korhonen P, Mikhailov N, Grubman A, Polo JM, Wilson T, Komppula M, Rönkkö T, Gu C, Mackay-Sim A, Malm T, White AR, Jalava P & Kanninen K. Urban air particulate matter induces mitochondrial dysfunction in human olfactory mucosal cells. Part Fibre Toxicol 17, 18 (2020). https://doi.org/10.1186/s12989-020-00352-4

University of Eastern Finland

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.