Atomic physics: Radiation pressure with recoil

June 15, 2020

Light exerts a certain amount of pressure onto a body: sun sails could thus power space probes in the future. However, when light particles (photons) hit an individual molecule and knock out an electron, the molecule flies toward the light source. Atomic physicists at Goethe University have now observed this for the first time, confirming a 90 year-old theory.

As early as the 16th century, the great scholar Johannes Kepler postulated that sunlight exerted a certain pressure, as the tail of the comets he observed consistently pointed away from the sun. In 2010 the Japanese space probe Ikaros used a sun sail for the first time in order to use the power of sunlight to gain a little speed.

Physically and intuitively, the pressure of light or radiation can be explained by the particle characteristic of light: light particles (photons) strike the atoms of a body and transfer a portion of their own momentum (mass times speed) onto that body, which thus becomes faster.

However, when in the 20th century physicists studied this momentum transfer in the laboratory during experiments on photons of certain wavelengths which knocked individual electrons out of atoms, they were met by a surprising phenomenon: the momentum of the ejected electron was greater than that of the photon that struck it. This is actually impossible - since Isaac Newton it has been known that within a system, for every force there must exist an equal but opposite force: the recoil, so to speak. For this reason, the Munich scientist Arnold Sommerfeld concluded in 1930 that the additional momentum of the ejected electron must come from the atom it left. This atom must fly in the opposite direction; in other words, toward the light source. However, this was impossible to measure with the instruments available at that time.

Ninety years later the physicists in the team of doctoral student Sven Grundmann and Professor Reinhard Dörner from the Institute for Nuclear Physics have succeeded for the first time in measuring this effect using the COLTRIMS reaction microscope developed at Goethe University Frankfurt. To do so, they used X-rays at the accelerators DESY in Hamburg and ESRF in French Grenoble, in order to knock electrons out of helium and nitrogen molecules. They selected conditions that would require only one photon per electron. In the COLTRIMS reaction microscope, they were able to determine the momentum of the ejected electrons and the charged helium and nitrogen atoms - which are called ions - with unprecedented precision.

Professor Reinhard Dörner explains: "We were not only able to measure the ion's momentum, but also see where it came from - namely, from the recoil of the ejected electron. If photons in these collision experiments have low energy, the photon momentum can be neglected for theoretical modelling. With high photon energies, however, this leads to imprecision. In our experiments, we have now succeeded in determining the energy threshold for when the photon momentum may no longer be neglected. Our experimental breakthrough allows us to now pose many more questions, such as what changes when the energy is distributed between two or more photons."
-end-
Publication: Sven Grundmann, Max Kircher, Isabel Vela-Perez, Giammarco Nalin, Daniel Trabert, Nils Anders, Niklas Melzer, Jonas Rist, Andreas Pier, Nico Strenger, Juliane Siebert, Philipp V. Demekhin, Lothar Ph. H. Schmidt, Florian Trinter, Markus S. Schöffler, Till Jahnke, and Reinhard Dörner: Observation of Photoion Backward Emission in Photoionization of He and N2. Phys. Rev. Lett. 124, 233201 https://doi.org/10.1103/PhysRevLett.124.233201

Further information:

Prof. Dr. Reinhard Dörner
Institute for Nuclear Physics
Tel. +49 69 798-47003
doerner@atom.uni-frankfurt.de
https://www.atom.uni-frankfurt.de/

Current news about science, teaching, and society can be found on GOETHE-UNI online

Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet: http://www.goethe-universitaet.de

Publisher: The President of Goethe University Editor: Dr. Markus Bernards, Science Editor, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: -49 (0) 69 798-12498, Fax: +49 (0) 69 798-763 12531, bernards@em.uni-frankfurt.de

Goethe University Frankfurt

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.