Coffee, cocoa and vanilla: an opportunity for more trees in tropical agricultural landscapes

June 15, 2020

The cultivation of coffee, cocoa and vanilla secures the income of many small-holder farmers and is also a driver of land-use change in many tropical countries. In particular, cultivation in agroforestry systems, in which these crops are combined with trees that provide shade, is often considered to have great potential for ecologically sustainable cultivation. Researchers at the University of Göttingen are now showing that the land-use history of agroforestry systems plays a crucial role in assessing the sustainability of agroforestry. The results have been published in the journal Conservation Letters.

Tropical agroforests differ greatly in their land-use history, i.e. the former use of the land now occupied by agroforests. On the one hand, an agroforest can be established directly in a forest - in this case the undergrowth is removed and replaced by vanilla vines, coffee or cocoa bushes. In the process, many plant and animal species and important ecosystem services are lost. On the other hand, an agroforest can be established on land that is open - for example on a pasture or cornfield which was forest in former times but had been cleared for farming. In this case, the land would be replanted with trees, and so animal species that depend on trees may benefit. Trees also store carbon and may have a cooling effect, which can reduce global warming.

"Our results show that agroforestry systems can only lead to a significant enhancement of the landscape for biodiversity if they are established on open land," says Dominic Martin, first author of the study. "The conversion of the remaining species-rich tropical forests into coffee, cocoa or vanilla plantations should, however, be avoided." This requires incentives, adds Professor Holger Kreft, Head of the Biodiversity, Macroecology and Biogeography Group at the University of Göttingen. "Sustainability labels should take this into account and avoid giving certification to plantations that were previously forest. It is really only in this way that the ecological advantages of cultivation in agroforestry systems can be achieved. This can then help to ensure that our morning coffee can be enjoyed without a bitter aftertaste," says Kreft.
-end-
The study comes from the multidisciplinary project "Diversity Turn" at the University of Göttingen, which is funded by the Volkswagen Foundation and the Ministry of Science and Culture of Lower Saxony.

Original publication: Dominic Martin et al. (2020) Land-use history determines ecosystem services and conservation value in tropical agroforestry. Conservation Letters. DOI: https://doi.org/10.1111/conl.12740

Alternative link: https://conbio.onlinelibrary.wiley.com/doi/full/10.1111/conl.12740

Contact:

Dominic Martin
University of Göttingen
Faculty of Forest Sciences and Forest Ecology
Biodiversity, Macroecology and Biogeography group
Büsgenweg 1, 37077 Göttingen, Germany
Tel: +49 (0)551 3933167
Mobile: +49 (0)17 629564000
Email: dominic.martin@uni-goettingen.de

http://www.uni-goettingen.de/en/128741.html

Professor Holger Kreft
University of Göttingen
Faculty of Forest Sciences and Forest Ecology
Biodiversity, Macroecology and Biogeography group
Tel: +49 (0)551 3928757
Email: hkreft@uni-goettingen.de

University of Göttingen

Related Biodiversity Articles from Brightsurf:

Biodiversity hypothesis called into question
How can we explain the fact that no single species predominates?

Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.

Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.

Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.

Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.

Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.

Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.

Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.

Read More: Biodiversity News and Biodiversity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.