Some 400 'fragile regions' of genome more vulnerable to evolutionary breaks

June 16, 2003

San Diego, June 16, 2003 -- Researchers from the University of California, San Diego (UCSD) Jacobs School of Engineering have uncovered evidence that major evolutionary changes are more likely to occur in approximately 400 'fragile' genomic regions that account for only 5 percent of the human genome. The findings, reported in the June 24 issue of the Proceedings of the National Academy of Sciences (PNAS), undercut the widely held view among scientists that evolutionary breakpoints -- disruptions in the order of genes on chromosomes -- are purely random. Apart from its implications for evolutionary theory, the study could have major implications for medical research related to diseases such as leukemia, which are caused by clinical (rather than evolutionary) chromosomal breakpoints.

"These rearrangements are like earthquakes that are more likely to happen along fault lines, which is why you're more likely to see a quake in Los Angeles than Chicago," said Pavel Pevzner, the Ronald R. Taylor Chair in the Jacobs School's Computer Science and Engineering department, who co-authored the study with project scientist Glenn Tesler. "Similarly, there are 'faults' within the human genome. They are fragile regions, as opposed to solid regions that show much less propensity for rearrangement and make up about 95 percent of the genome."

Pevzner and Tesler are experts in bioinformatics -- the use of computing and mathematics to study genomes -- and their study grew out of the first giant genomic sequencing projects, funded in part by the National Institutes of Health. Those projects resulted in DNA sequencing of the human and mouse genomes. In December 2002, that comparison led the scientists to compute 281 large blocks (of one million 'letters' or more, out of roughly three billion letters in the mammalian genome), and 245 major rearrangements since the two species evolved from a common ancestor 75 million years ago. "Like the ancient super-continent Pangea broke into seven continents 130 million years ago, the genome of the common mouse and human ancestor that lived 75 million years ago broke into 281 blocks in the course of human-mouse evolution," added Pevzner. "It's like starting out with two decks of cards representing the ancestral genome, and the decks are re-shuffled so the cards end up in a different sequence."

Biologists have assumed that the re-shuffling is random -- a view enshrined in 'random breakage theory,' which has been borne out by many major studies over the past thirty years. "Based on random breakage theory, the breaks in the genome should have been evenly distributed," said Tesler. "Instead, they happened surprisingly often in these fragile regions, and avoided other regions altogether."

"Now that we are able to compare the genomes, it becomes clear that these breaks are not random," concluded Pevzner. "They occur disproportionately in these fragile regions, just as earthquakes happen more often near major fault lines."

Pevzner and Tesler do not discount random breakage theory. In fact, pointed out Pevzner, that theory "was prophetically accurate in predicting roughly 200 major genomic blocks in human-mouse evolution -- a prediction made in the mid-1980s, years before sequencing of the two species' genomes was complete." At the macro level, their new theory leads to the same conclusions as random breakage theory, and thus is consistent with all genetic data observable prior to 2002. However, at the microscopic level, when it comes to the short breakpoint regions, their theory explains the new genomic data while random breakage theory fails to do so.

The UCSD scientists hope to gather more evidence for their 'fragile breakage theory' by running similar genomic comparisons with new genomes as they are sequenced -- first rat, and later cat, dog and other mammals. They also want to analyze genomic data for clues to understanding whether the major rearrangements happen all at once, or are the product of multiple smaller rearrangements over time. "It's like looking at earthquake damage in the San Fernando Valley," observed Pevzner. "Was it the product of the 1994 Northridge quake alone, or the result of many smaller quakes over time?"

Meanwhile, Pevzner and postdoctoral researcher Ben Raphael are collaborating with biologists at the University of California, San Francisco (UCSF) Cancer Center to do computational analysis of genome rearrangements implicated in breast cancer. "Surprisingly enough, you can view the breast cancer genome as an extremely fast-evolving human genome," said Pevzner. "All genomes have fragile regions that are more susceptible to rearrangements. Obviously the time scale is very different, as are the consequences -- disease and even death from cancer, or the birth of new species or improvements to existing species from evolution. But we are not yet sure whether cancer uses the same type of fragile region to break DNA as used in human evolution. We are working on it and we already have the first rough draft of the genomic architecture of certain breast-cancer cell lines."

Pevzner and Tesler also hope to drill down deeper into the genomic data, to analyze how their fragile breakage theory works when looking at smaller blocks of genetic letters. "It's not like looking at a magazine, where the layout tells you exactly where one story breaks and another begins," explained Tesler. "With the human genome, we know where chromosomes break, but we don't know how big all its component units are. So the best we can do is look at large quantities of data and use computational methods to discern patterns."

Concluded Pevzner: "I am confident that within a few years, we will be able to figure out where the 'faults' are in the human genome, and that will give us much greater insight into the nature of evolution, and hopefully a better understanding of cancer and other diseases."
-end-
Media Contact: Doug Ramsey, 858-822-5825, dramsey@ucsd.edu

Note to Editors: Media are welcome to link directly to streaming video clips of the mentioned experts, viewable at http://www.jacobsschool.ucsd.edu/news_events/news_2003/20030616.shtml.

Related Links

Complete Article on PNAS Early Edition Online http://www.pnas.org/cgi/doi/10.1073/pnas.1330369100
Proceedings of the National Academy of Sciences http://www.pnas.org
UCSD Bioinformatics Laboratory http://www.cse.ucsd.edu/groups/bioinformatics/index.html
December 2002 News Release http://www.jacobsschool.ucsd.edu/news_events/news_2002/20021204.shtml
Pavel Pevzner Home Page http://www-cse.ucsd.edu/users/ppevzner
Glenn Tesler Home Page http://www-cse.ucsd.edu/users/gptesler
Pevzner Faculty Profile http://www.jacobsschool.ucsd.edu/FacBios/findprofile.pl?fmp_recid=119
National Human Genome Research Institute http://www.genome.gov
Human-Mouse Genome Comparison http://www.genome.gov/page.cfm?pageID=10005831

University of California - San Diego

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.