Pan-STARRS asteroid hunter and sky surveyor now fully operational

June 16, 2010

Astronomers announced today that the first Pan-STARRS (Panoramic Survey Telescope & Rapid Response System) telescope, PS1, is fully operational. This innovative facility will be at the front line of Earth defense by searching for "killer" asteroids and comets. It will map large portions of the sky nightly, making it an efficient sleuth for not just asteroids but also supernovae and other variable objects.

"Pan-STARRS is an all-purpose machine," said Harvard astronomer Edo Berger. "Having a dedicated telescope repeatedly surveying large areas opens up a lot of new opportunities."

"PS1 has been taking science-quality data for six months, but now we are doing it dusk-to-dawn every night," says Dr. Nick Kaiser (University of Hawaii Institute for Astronomy, or IfA), the principal investigator of the Pan-STARRS project.

Pan-STARRS will map one-sixth of the sky every month. By casting a wide net, it is expected to catch many moving objects within our solar system. Frequent follow-up observations will allow astronomers to track those objects and calculate their orbits, identifying any potential threats to Earth. PS1 also will spot many small, faint bodies in the outer solar system that hid from previous surveys.

"PS1 will discover an unprecedented variety of Centaurs [minor planets between Jupiter and Neptune], trans-Neptunian objects, and comets. The system has the capability to detect planet-size bodies on the outer fringes of our solar system," said Smithsonian astronomer Matthew Holman.

Pan-STARRS features the world's largest digital camera -- a 1,400-megapixel (1.4 gigapixel) monster. With it, astronomers can photograph an area of the sky as large as 36 full moons in a single exposure. In comparison, a picture from the Hubble Space Telescope's WFC3 camera spans an area only one-hundredth the size of the full moon (albeit at very high resolution).

This sensitive digital camera was rated as one of the "20 marvels of modern engineering" by Gizmo Watch in 2008. Inventor Dr. John Tonry (IfA) said, "We played as close to the bleeding edge of technology as you can without getting cut!"

Each image, if printed out as a 300-dpi photograph, would cover half a basketball court, and PS1 takes an image every 30 seconds. The amount of data PS1 produces every night would fill 1,000 DVDs.

"As soon as Pan-STARRS turned on, we felt like we were drinking from a fire hose!" said Berger. He added that they are finding several hundred transient objects a month, which would have taken a couple of years with previous facilities.

Located atop the dormant volcano Haleakala, Pan-STARRS exploits the unique combination of superb observing sites and technical and scientific expertise available in Hawaii. Funding for the development of the observing system was provided by the U.S. Air Force.
The PS1 Surveys have been made possible through contributions of the PS1 Science Consortium (PS1SC, IfA; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg, Germany and the Max Planck Institute for Extraterrestrial Physics, Garching, Germany; the Johns Hopkins University; the University of Durham; the University of Edinburgh; the Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics; the Los Cumbres Observatory Global Telescope Network, Inc.; and the National Central University of Taiwan.

Harvard-Smithsonian Center for Astrophysics

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to