Sharper than Hubble

June 16, 2010

The next generation of adaptive optics has arrived at the Large Binocular Telescope (LBT) in Arizona, providing astronomers with a new level of image sharpness never before seen. Developed in a collaboration between Italy's Arcetri Observatory of the Istituto Nazionale di Astrofisica (INAF) and the University of Arizona's Steward Observatory, this technology represents a remarkable step forward for astronomy. The LBT, with its two 8.4 metre -mirrors, is the largest single optical telescope in the world. The telescope is a collaboration between institutions from the USA, Italy and Germany. Germany's 25% participation is represented by the Max-Planck Society, the Astrophysical Institute Potsdam and Heidelberg University. The test camera for the images shown here was developed by INAF and the Max-Planck-Institute for Astronomy (MPIA) in Heidelberg.

Until relatively recently, ground-based telescopes had to live with wavefront distortion caused by the Earth's atmosphere which significantly blurred images of distant objects (this is why stars appear to twinkle to the human eye). While there have been advancements in adaptive optics technology to correct atmospheric blurring, the LBT's innovative system truly takes this concept to a whole new level.

In closed-dome tests beginning May 12 and sky tests every night since May 25, astronomer Simone Esposito and his INAF team tested the new device, achieving exceptional results. The LBT's adaptive optics system, called the First Light Adaptive Optics system (FLAO), immediately outperformed all other comparable systems, delivering an image quality greater than three times sharper than the Hubble Space Telescope using just one of the LBT's two 8.4 metre mirrors. As soon as the adaptive optics are in place for both mirrors and their light is combined appropriately, it is expected that the LBT will achieve image sharpness ten times that of the Hubble.

"This is an incredibly exciting time as this new adaptive optics system allows us to achieve our potential as the world's most powerful optical telescope," said Richard Green, director of the LBT. "The successful results show that the next generation of astronomy has arrived, while providing a glimpse of the awesome potential the LBT will be capable of for years to come."

The unit of measure for perfection of image quality is known as the Strehl ratio, with a ratio of 100 % equivalent to an absolutely perfect image. Without adaptive optics, the ratio for ground-based telescopes is less than 1 percent. The adaptive optics systems on other major telescopes today improve image quality up to about 30 percent to 50 percent in the near-infrared wavelengths where the testing was conducted.

In the initial testing phase, the LBT's adaptive optics system has been able to achieve unprecedented Strehl Ratios of 60 to 80 percent, a nearly two-thirds improvement in image sharpness over other existing systems. The results exceeded all expectations and were so precise that the testing team had difficulty believing their findings. However, testing has continued since the system was first put on the sky on May 25, the LBT's adaptive optics have functioned flawlessly and have achieved peak Strehl ratios of 82 to 84 percent.

"The results on the first night were so extraordinary that we thought it might be a fluke, but every night since then the adaptive optics have continued to exceed all expectations. These results were achieved using only one of LBT's mirrors. Imagine the potential when we have adaptive optics on both of LBT's giant eyes." said Simone Esposito, leader of the INAF testing team.

Development of the LBT's adaptive optics system took more than a decade through an international collaboration. INAF, in particular the Arcetri Observatory, conceived the LBT instrument design and developed the electro-mechanical system, while the University of Arizona Mirror Lab created the optical elements, and the Italian companies Microgate and ADS International engineered several components. A prototype system was previously installed on the Multiple Mirror Telescope (MMT) at Mt. Hopkins, Arizona. The MMT system uses roughly half the number of actuators as the LBT's final version, but demonstrated the viability of the design. The LBT's infrared test camera, which produced the accompanying images, was a joint development of INAF, Bologna and the MPIA, Heidelberg.

"This has been a tremendous success for INAF and all of the partners in the LBT," said Piero Salinari, Research Director at the Arcetri Observatory, INAF. "After more than a decade and with so much care and effort having gone into this project, it is really rewarding to see it succeed so astoundingly."

This outstanding success was achieved through the combination of several innovative technologies. The first is the secondary mirror, which was designed from the start to be a main component of the LBT rather than an additional element as on other telescopes. The concave secondary mirror is 0.91 metres in diameter (3 feet) and only 1.6 millimetres thick. The mirror is so thin and pliable that it can easily be manipulated by actuators pushing on 672 tiny magnets glued to the back of the mirror, a configuration which offers far greater flexibility and accuracy than previous systems on other telescopes. An innovative "pyramid" sensor detects atmospheric distortions and manipulates the mirror in real time to cancel out the blurring, allowing the telescope to literally see as clearly as if there were no atmosphere. Incredibly, the mirror is capable of making adjustments every one thousandth of a second, with accuracy to better than ten nanometres (a nanometre is one millionth the size of a millimetre).

The $120 million LBT on Mount Graham utilizes two giant 8.4 metre mirrors and with the new adaptive optics the telescope will achieve the resolution of a 22.8-metre, or approximately 75-foot telescope. Implementation of the adaptive optics is the latest of several major breakthroughs for the LBT in recent months. For example, in April a near-infrared camera/spectrograph developed by a consortium of German institutes became available to astronomers for scientific observations, allowing them to penetrate interstellar dust clouds and reveal the secrets of the youngest and most distant galaxies. The new adaptive optics will enable other such versatile instruments to achieve their full potential on the LBT.

The LBT is an international collaboration among institutions in the United States, Italy and Germany. The LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system, Istituto Nazionale di Astrofisica, Italy, LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University, the Ohio State University, the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and University of Virginia.
-end-
Related links:

[1] More images from the adaptive optics system http://www.lbto.org/

[2] LBT-website of the Max Planck Institute for Astronomy http://www.mpia.de/Public/menu_q2e.php?LBT/index_en.html

Max-Planck-Gesellschaft

Related Astronomy Articles from Brightsurf:

Spitzer space telescope legacy chronicled in Nature Astronomy
A national team of scientists Thursday published in the journal Nature Astronomy two papers that provide an inventory of the major discoveries made possible thanks to Spitzer and offer guidance on where the next generation of explorers should point the James Webb Space Telescope (JWST) when it launches in October 2021.

New technology is a 'science multiplier' for astronomy
A new study has tracked the long-term impact of early seed funding obtained from the National Science Foundation on many key advances in astronomy over the past three decades.

Powerful new AI technique detects and classifies galaxies in astronomy image data
Researchers at UC Santa Cruz have developed a powerful new computer program called Morpheus that can analyze astronomical image data pixel by pixel to identify and classify all of the galaxies and stars in large data sets from astronomy surveys.

Astronomy student discovers 17 new planets, including Earth-sized world
University of British Columbia astronomy student Michelle Kunimoto has discovered 17 new planets, including a potentially habitable, Earth-sized world, by combing through data gathered by NASA's Kepler mission.

Task force recommends changes to increase African-American physics and astronomy students
Due to long-term and systemic issues leading to the consistent exclusion of African-Americans in physics and astronomy, a task force is recommending sweeping changes and calling for awareness into the number and experiences of African-American students studying the fields.

How to observe a 'black hole symphony' using gravitational wave astronomy
New research led by Vanderbilt astrophysicist Karan Jani presents a compelling roadmap for capturing intermediate-mass black hole activity.

Graphene sets the stage for the next generation of THz astronomy detectors
Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes.

3D holograms bringing astronomy to life
Scientists unravelling the mysteries of star cluster formation have taken inspiration from a 19th century magic trick, to help explain their work to the public.

The vibrating universe: Making astronomy accessible to the deaf
Astronomers at the University of California, Riverside, have teamed with teachers at the California School for the Deaf, Riverside, or CSDR, to design an astronomy workshop for students with hearing loss that can be easily used in classrooms, museums, fairs, and other public events.

Prehistoric cave art reveals ancient use of complex astronomy
As far back as 40,000 years ago, humans kept track of time using relatively sophisticated knowledge of the stars

Read More: Astronomy News and Astronomy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.