Nav: Home

Genetic mutation causes ataxia in humans and dogs

June 16, 2016

Cerebellar ataxia is a condition of the cerebellum that causes an inability to coordinate muscle movements. A study publishing June 16 in Cell Reports now describes a new genetic mutation as an additional cause of ataxia in humans and mice. The mutation, in the gene CAPN1, affects the function of the enzyme calpain-1 and causes abnormal brain development. The same genetic mutation is also associated with ataxia in Parson Russell Terrier dogs.

"There are a number of genes linked to motor function that can be involved in ataxia when mutated," says Michel Baudry, a neurobiologist at Western University of Health Sciences. "Not only have we identified another, but we've also refined our understanding of the calpain enzymes, which is important because several companies have been talking about using calpain inhibitors to treat neurodegenerative diseases."

Calpain is an enzyme involved with learning, memory, and neurodegeneration in the brain, but it comes in two major forms--calpain-1 and calpain-2. "Nobody could make much progress on figuring out what each form of calpain was doing, because most of the pharmacological studies used molecules that inhibit both types at once" says Baudry. But about eight years ago, Baudry's team obtained a line of mice genetically engineered to lack only calpain-1 to examine the differences.

Baudry's mouse studies caught the attention of Henry Houlden, a neurologist at University College London, who was leading a team investigating ataxia. "Around two years ago, we identified two families with CAPN1 mutations with ataxia and spasticity," Houlden explains. Once the researchers determined that the mutation affected calpain-1's function, they looked up Baudry's work on the calpain-1 knockout mice. "Together, we started to investigate the function of this gene," says Houlden. The current study includes four families with members that have CAPN1 mutations and display symptoms of ataxia.

Baudry's team started testing whether the knockout mice had ataxia by tracking their balance when placed on a rotating rod. "We had never looked at the cerebellum in our mice before," says Baudry. "But sure enough, we found that they had mild cerebellar ataxia."

The researchers demonstrated that during the first week after birth, the mice lacking calpain-1 had a much higher rate of neuronal death in their cerebellum, as compared to normal mice, and many of their synapses failed to mature.

"Calpain-1 is neuroprotective," explains Baudry. "When the brain matures, excess neurons are supposed to be pruned--but calpain-1 prevents that process from getting out of control." The team further determined that calpain-1 works normally by degrading an enzyme called PHLPP1, a protein phosphatase involved in programmed cell death. Injecting another compound involved in the pathway during the first postnatal week caused the newborn mice with CAPN1 mutations to develop normally.

Pharmacologically, the attempts to use calpain inhibitors in the clinic may not be working because they don't discriminate between calpain-1 and calpain-2, says Baudry: "If you want to try to address neurodegeneration, you have to use a calpain-2 inhibitor." Baudry is currently working with a team to develop calpain-2 inhibitors as neuroprotective drugs, under the umbrella of a new company called NeurAegis.
-end-
This study was supported by NINDS, the Agence Nationale de la Recherche, the Verum Foundation, the patient association "Connaitre les Syndromes cérébelleux," the Roger de Spoelberg Foundation, and the European Union.

Cell Reports, Wang et al.: "Defects in the CAPN1 gene result in alterations in cerebellar development and in cerebellar ataxia in mice and humans" http://www.cell.com/cell-reports/fulltext/S2211-1247(16)30627-1

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...