Nav: Home

Pitch range produced by vocal cords

June 16, 2016

Picture a singer, accompanied by a grand piano. As the singer's voice dances through multiple octaves of range, the pianist's fingers trip from one end of the keyboard to the other. Both the singer's voice and the piano are dynamic instruments. But while the piano creates its music using the vibration of 88 strings, the singer uses only two.

According to Ingo Titze, director of the National Center for Voice and Speech at the University of Utah, vocal cords are able to produce a wide range of sound frequencies because of the larynx's ability to stretch vocal cords and the cords' molecular composition. In a new paper published today in PLOS Computational Biology, Titze and his colleagues show how these two characteristics of various species' larynxes can closely predict the range of frequencies each species can produce. The results, Titze says, reveal the evolutionary roots of how and why voice arose.

"It's absolutely amazing how nature has created a compound, laminated string to cover a pitch range that is difficult, by any stretch of the imagination, to cover with one string," Titze says.

Folds vs. cords

While most people know the structures in our throats that produce speech as "vocal cords," the term is not universally used among voice researchers. Some have preferred "vocal folds" since the mid-1970s, when studies of vocal anatomy showed a folding of the vocal ligament (the cord) during vibration. Titze says that, for the purposes of this discussion, "vocal cord" may be more apt, due to consideration of the cord's string-like properties.

At birth, vocal cords are composed of a uniform, gel-like material. As the vocal cords mature, fibers develop within the gel, eventually forming a multilayered, laminated string. Imagine a set of guitar strings glued close together with gelatin.

Fibers throughout the vocal cord layers are linked together, however, so that while some layers may be under different amounts of tension than others, the layers do not vibrate independently of each other. Returning to our guitar-strings-in-gelatin analogy, when one string is plucked, the entire gel-fiber set shakes along with it. The muscles in the larynx further modulate the sound the cords produce, lengthening and shortening the cords to change the pitch.

An animal choir

Titze and his colleagues, Tobias Riede of Midwestern University in Glendale, Arizona and Ted Mau of the University of Texas Southwestern Medical Center, compiled measurements of larynx characteristics for 16 species, including humans and animals ranging from mice to elephants. As expected, larger animals had larger larynxes, and body size correlated well with the average frequency an animal could produce.

But body size could not predict an animal's range of possible frequencies. "So, one asks, what's going on inside the larynx that allows this quite different outcome for pitch range across species, where the mean pitch is so well-correlated with size?" Titze says.

The team found that two factors were much better at predicting range: A factor measuring the amount of length change possible in the vocal cord, or how far it could stretch, and a factor measuring the stiffness of the cord due to the fiber structures within.

Titze says that creating a manmade instrument with the same properties as a vocal cord might prove technically daunting. The first step, he says, would be to fashion a laminated string, with the layers cross-linked together and supported by fluid. "But then we'd have to figure out how to pull it, elongate it, and how to distribute the tension to one layer versus another layer versus another layer," he says. "Nature has figured this out, how to literally play the dominant layer for a given pitch."

Obtaining and retaining vocal range

The results may help surgeons repair damaged vocal cords. Because both cord stretchiness and stiffness factor into range, doctors may have more options to design treatments to restore much of a patient's range. The findings also have implications for vocal training, and suggest that singers can increase their ranges by either stretching their vocal cords or by engaging in exercises that affect fiber spacing and cord stiffness - again, more options to achieve the same goal.

But Titze's investigations into vocal cord structure also reveal something more primitive. Titze says that vocalization evolved to help primates communicate over long distances by using high and loud calls. Modern human speech communication, however, does not make much use of the wide pitch and loudness range of the mammalian larynx.

That capacity is still inherent in our vocal cords, he says, but so much of our communication is electronically modulated and amplified, with even professional singers aided by microphones, that our vocal cords are rarely put to their full use.

"If you never stretch your vocal cords and never do high pitches or loud voice, eventually the ligament will atrophy into a simpler structure and you won't have that range available to you," Titze says.

A simple string

Despite the complexities of the vocal cord structure, Titze says he was surprised at how well the model of a simple vibrating string explained the cord's range. "Most people would laugh at using a simple vibrating string model for something as complicated as a 3-D, nonhomogeneous tissue structure," he says. "But the string model does an incredibly good job of explaining this range of frequencies."
This research was funded by the National Institute on Deafness and Other Communication Disorders.

This news release and an image can be downloaded from

Once the paper publishes, the link to the live paper will be:

University of Utah

Related Speech Articles:

New findings on human speech recognition at TU Dresden
Neuroscientists at TU Dresden were able to prove that speech recognition in humans begins in the sensory pathways from the ear to the cerebral cortex and not, as previously assumed, exclusively in the cerebral cortex itself.
Babbling babies' behavior changes parents' speech
New research shows baby babbling changes the way parents speak to their infants, suggesting that infants are shaping their own learning environments.
Hearing through your fingers: Device that converts speech
A novel study published in Restorative Neurology and Neuroscience provides the first evidence that a simple and inexpensive non-invasive speech-to-touch sensory substitution device has the potential to improve hearing in hearing-impaired cochlear implant patients, as well as individuals with normal hearing, to better discern speech in various situations like learning a second language or trying to deal with the 'cocktail party effect.' The device can provide immediate multisensory enhancement without any training.
AI can detect depression in a child's speech
A machine learning algorithm can detect signs of anxiety and depression in the speech patterns of young children, potentially providing a fast and easy way of diagnosing conditions that are difficult to spot and often overlooked in young people.
Synthetic speech generated from brain recordings
A state-of-the-art brain-machine interface created by UC San Francisco neuroscientists can generate natural-sounding synthetic speech by using brain activity to control a virtual vocal tract -- an anatomically detailed computer simulation including the lips, jaw, tongue, and larynx.
More Speech News and Speech Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...