Nav: Home

Researchers send DNA on sequential, and consequential, building mission

June 16, 2017

A team of scientists has developed a method to create structures whose building blocks are a millionth of a meter in size by encoding DNA with assembly instructions.

The work, described in the journal Nature Communications, manipulates the sequencing of DNA to offer an intricate and innovative approach to synthesize materials at the most fundamental level.

"Sequential programmability is a powerful addition to the self-assembly toolbox that will prove useful in creating the tiniest of materials," explains Yin Zhang, the paper's lead author and a graduate student at New York University's Center for Soft Matter Research. "It brings some of the advantages of the biological use of controlled sequential assembly using molecules, nucleic acids, and proteins to a new design scale."

NYU physics professors Paul Chaikin and Jasna Brujic as well as Nadrian Seeman, an NYU professor of chemistry, co-directed the research.

Both natural and human-made structures are built sequentially -- from cells to skyscrapers. Like Russian nesting dolls, assembly takes place on the inside before commencing on the outside.

However, when making materials on a micrometer scale, or about one hundredth of the width of a strand of human hair, scientists face challenges unfamiliar to engineers and manufacturers.

While many methods have been adopted to manipulate such tiny particles, these approaches all have notable shortcomings in assembling structures.

The NYU team sought to overcome these hurdles with a new approach: encode the instructions of assembly within the building blocks and let these building blocks self-organize into a prescribed structure in a pre-determined sequence.

To do so, it deployed different strands of DNA, each coated on a droplet of oil in water, where they then "talked" to each other through DNA-mediated interactions. Specifically, the scientists placed four "flavors" of droplets--labeled B, C, D, and E--into water. They then added an "initiator" droplet, A, which began the sequencing process. Here, the DNA strand on A initiates a chain of events in which it displaces one of the paired strands on B, whose released strand moves to activate C, the next droplet in the sequence, and so on. The process results in a droplet chain, ABCDE.
-end-
The study's other authors were Center for Soft Matter Research post-doctoral fellows Angus McMullen, Lea-Laetitia Pontani, and Xiaojin He as well as Ruojie Sha, a post-doctoral research fellow in NYU's Department of Chemistry.

This work is supported by the Department of Energy (DE-SC0007991, DE-SC0000989), the National Science Foundation (EFRI-1332411, CCF-1526650) as well as NSF's MRSEC program (DMR-1420073), the Army Research Office (MURI W911NF-11-1-0024), and the Office of Naval Research (N000141110729).

New York University

Related Dna Articles:

A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...