Nav: Home

Researchers send DNA on sequential, and consequential, building mission

June 16, 2017

A team of scientists has developed a method to create structures whose building blocks are a millionth of a meter in size by encoding DNA with assembly instructions.

The work, described in the journal Nature Communications, manipulates the sequencing of DNA to offer an intricate and innovative approach to synthesize materials at the most fundamental level.

"Sequential programmability is a powerful addition to the self-assembly toolbox that will prove useful in creating the tiniest of materials," explains Yin Zhang, the paper's lead author and a graduate student at New York University's Center for Soft Matter Research. "It brings some of the advantages of the biological use of controlled sequential assembly using molecules, nucleic acids, and proteins to a new design scale."

NYU physics professors Paul Chaikin and Jasna Brujic as well as Nadrian Seeman, an NYU professor of chemistry, co-directed the research.

Both natural and human-made structures are built sequentially -- from cells to skyscrapers. Like Russian nesting dolls, assembly takes place on the inside before commencing on the outside.

However, when making materials on a micrometer scale, or about one hundredth of the width of a strand of human hair, scientists face challenges unfamiliar to engineers and manufacturers.

While many methods have been adopted to manipulate such tiny particles, these approaches all have notable shortcomings in assembling structures.

The NYU team sought to overcome these hurdles with a new approach: encode the instructions of assembly within the building blocks and let these building blocks self-organize into a prescribed structure in a pre-determined sequence.

To do so, it deployed different strands of DNA, each coated on a droplet of oil in water, where they then "talked" to each other through DNA-mediated interactions. Specifically, the scientists placed four "flavors" of droplets--labeled B, C, D, and E--into water. They then added an "initiator" droplet, A, which began the sequencing process. Here, the DNA strand on A initiates a chain of events in which it displaces one of the paired strands on B, whose released strand moves to activate C, the next droplet in the sequence, and so on. The process results in a droplet chain, ABCDE.
-end-
The study's other authors were Center for Soft Matter Research post-doctoral fellows Angus McMullen, Lea-Laetitia Pontani, and Xiaojin He as well as Ruojie Sha, a post-doctoral research fellow in NYU's Department of Chemistry.

This work is supported by the Department of Energy (DE-SC0007991, DE-SC0000989), the National Science Foundation (EFRI-1332411, CCF-1526650) as well as NSF's MRSEC program (DMR-1420073), the Army Research Office (MURI W911NF-11-1-0024), and the Office of Naval Research (N000141110729).

New York University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".