Nav: Home

Distant brain regions selectively recruit stem cells

June 16, 2017

Stem cells persist in the adult mammalian brain and generate new neurons throughout life. A research group at the Biozentrum of the University of Basel reports in the current issue of "Science" that long-distance brain connections can target discrete pools of stem cells in their niche and stimulate them to divide and produce specific subtypes of olfactory bulb neurons. This allows the "on-demand" generation of particular types of neurons in the adult brain.

Our brain generates new neurons throughout life. A diversity of stimuli promotes stem cells in their niche to form neurons that migrate to their place of action. In an animal model Prof. Fiona Doetsch's team at the Biozentrum of the University of Basel has now been able to show that feeding-related neurons in the hypothalamus, a brain control center for many physiological functions, stimulate a distinct type of stem cell to proliferate and mature into specific nerve cells in response to feeding.

Stem cells make neurons important for olfaction

Stem cells reside in only a few areas of the brain. The largest reservoir is the subventricular zone, where quiescent stem cells lie closely packed together. Signals from the environment can trigger stem cells to start dividing. The stem cells in the subventricular zone supply the olfactory bulb with neurons. In rodents, almost 100,000 new neurons migrate from the stem cell niche to the olfactory bulb each day. Olfactory stimuli reaching the nose are processed in the olfactory bulb and the information is then sent to other brain regions. The closely interwoven network of diverse olfactory bulb neurons is important for distinguishing odors.

Stem cell activation over long distances

Each stem cell has its own identity, depending on its location in the subventricular zone. While new neurons are continuously generated, whether niche signals act to control different pools of stem cells is unknown. "We have uncovered a novel long-distance and regionalized connection in the brain between the hypothalamus and the subventricular zone, and show that physiological states such as hunger and satiety can regulate the recruitment of specific pools of stem cells and in turn the formation of certain neuron subtypes in the olfactory bulb," explains Doetsch. When the animals fasted, the activity of the nerve cells in the hypothalamus decreased and with it also the rate of proliferation in the targeted stem cell population. This returns to normal levels when the animals feed again. The division of stem cells can be controlled by changing the activity of feeding-related neurons.

The researchers reported further that the targeted stem cell subpopulation gives rise to deep granule cells in the olfactory bulb, which may provide a substrate for adaptive responses to the environment. The results of the study raise the exciting possibility that neural circuits from diverse brain regions can regulate different pools of stem cells in response to various stimuli and states.
-end-
Original source

Alex Paul, Zayna Chaker and Fiona Doetsch
Hypothalamic regulation of distinct adult neural stem cells and neurogenesis
Science (2017), doi: 10.1126/science.aal3839

University of Basel

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...