Nav: Home

Antibiotics promote resistance on experimental croplands

June 16, 2017

Washington, DC - June 16, 2017 - Canadian researchers have generated both novel and existing antibiotic resistance mechanisms on experimental farmland, by exposing the soil to specific antibiotics. The research is published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

"Antimicrobial resistance is a global threat to human and animal health with bacteria now resistant to the last-resort antibiotics, including carbapenems and polymyxins," said corresponding author Ed Topp, PhD, Principal Research Scientist at Agriculture and Agri-Food, Canada, London, Ontario, describing the motivation for the research.

Antibiotics have been getting into crop production systems via application of manures from livestock, which are given antibiotics to maintain health under crowded production conditions. Antibiotics also get into croplands when human waste is applied as fertilizer, and directly from livestock on pasture. (Certain different antibiotics used to be given to livestock to promote faster growth, but Topp said that in both Canada and the US, the regulations now prohibit that, and his experiments did not include those antibiotics.)

In the study, Topp and his collaborators, including first author Calvin Lau, PhD, a Visiting Fellow at Agriculture and Agri-Food, Canada, exposed farm plots to antibiotics, over periods of up to 16 years.

Topp's research team ultimately sampled soil from the plots, extracting DNA, and cloning large fragments of that DNA into a strain of E. coli that is sensitive to most antibiotics. They then plated large numbers of E. coli onto a medium that contained one of several antibiotics, including from the classes of macrolides, β-lactams, and sulfonamides.

"Any colonies that grew would presumptively contain a cloned fragment that conferred resistance," said Topp. "We obtained a total of 36 antibiotic resistance genes from the antibiotic-resistant E. coli."

The investigators compared the resistance genes with currently known resistance genes. Some of those obtained were not new. Others were similar to existing resistance genes, but not precisely the same. Some coded for multi-drug efflux pumps, which are multi-drug resistance mechanisms embedded in the bacterial membrane that pump specific antibiotics out of the bacteria. And "In a few cases the DNA sequences [in the genes] were unlike any known," said Topp.

In one instance, the investigators discovered a novel gene conferring resistance to the macrolide antibiotics, which was a small 61 residue proline-rich peptide, said Topp. The resistance mechanism has yet to be determined.

"Results from these studies will establish the risk of crop contamination, potential enrichment of antimicrobial resistance in environmental bacteria, and effects of antibiotics on non-target micro-organisms that underpin many of the services provided by ecosystems," said Topp. For example, if the evidence shows that effluents from municipal water treatment, from animal manure, or from pharmaceutical manufacturing plants are selecting for antibiotic resistant bacteria in the environment, that may justify treatment of such waste streams prior to application on croplands.
-end-
The American Society for Microbiology is the largest single life science society, composed of over 50,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab