Nav: Home

UVA scientists use machine learning to improve gut disease diagnosis

June 16, 2019

Charlottesville, VA -- A study published in the open access journal JAMA Open Network June 14 by scientists at the University of Virginia schools of Engineering and Medicine and the Data Science Institute says machine learning algorithms applied to biopsy images can shorten the time for diagnosing and treating a gut disease that often causes permanent physical and cognitive damage in children from impoverished areas.

In places where sanitation, potable water and food are scarce, there are high rates of children suffering from environmental enteric dysfunction, a disease that limits the gut's ability to absorb essential nutrients and can lead to stunted growth, impaired brain development and even death.

The disease affects 20 percent of children under the age of 5 in low- and middle-income countries, such as Bangladesh, Zambia and Pakistan, but it also affects some children in rural Virginia.

For Dr. Sana Syed, an assistant professor of pediatrics in the UVA School of Medicine, this project is an example of why she got into medicine. "You're talking about a disease that affects hundreds of thousands of children, and that is entirely preventable," she said.

Syed is working with Donald Brown, founding director of the UVA Data Science Institute and W.S. Calcott Professor in the Department of Engineering Systems and Environment, to incorporate machine learning into the diagnostic process for health officials combating this disease. Syed and Brown are using a deep learning approach called "convolutional neural networks" to train computers to read thousands of images of biopsies. Pathologists can then learn from the algorithms how to more effectively screen patients based on where the neural network is looking for differences and where it is focusing its analysis to get results.

"These are the same types of algorithms Google is using in facial recognition, but we're using them to aid in the diagnosis of disease through biopsy images," said Brown.

The machine learning algorithm can provide insights that have evaded human eyes, validate pathologists' diagnoses and shorten the time between imaging and diagnosis, and from a technical engineering perspective, might be able to offer a look into data science's "black boxes" by giving clues into the thinking mechanism of the machine.

But for Syed, it is still about saving lives.

"There is so much poverty and such an unfair set of consequences," she said. "If we can use these cutting-edge technologies and ways of looking at data through data science, we can get answers faster and help these children sooner."
-end-
Syed's and Brown's research is funded by grants from the UVA Center for Engineering in Medicine and the integrated Translational Health Research Institute of Virginia (iTHRIV).

About the Center for Engineering in Medicine: The center identifies, develops and translates ideas at the engineering-medicine interface to improve prevention, diagnosis, monitoring and treatment of disease. UVA engineers and clinicians are forming innovative new research partnerships while building a comprehensive, sustainable ecosystem for advancing the future of medical care. Currently, more than 200 engineers and clinicians from 31 departments and divisions across UVA are engaged in engineering-medicine projects supported by the center. Learn more at engineering.virginia.edu/eim.

About the integrated Translational Health Research Institute of Virginia (iTHRIV): iTHRIV is a collaboration of public and private institutions across the Commonwealth of Virginia that promotes shared resources and best practices, team science, community engagement and innovation. iTHRIV integrates data science approaches through all aspects of clinical translational research to speed discovery and improve the health of our communities. iTHRIV is committed to train and equip the next generation of clinical and translational researchers. Health care solutions are hidden in underutilized data. The iTHRIV overall goal is to support clinical translational research for the benefit of diverse rural and urban populations by expanding iTHRIV infrastructure and improving processes. Learn more at http://www.ithriv.org/.

About UVA Engineering: As part of the top-ranked, comprehensive University of Virginia, UVA Engineering is one of the nation's oldest and most respected engineering schools. Our mission is to make the world a better place by creating and disseminating knowledge and by preparing future engineering leaders. Outstanding students and faculty from around the world choose UVA Engineering because of our growing and internationally recognized education and research programs. UVA is the No. 1 public engineering school in the country for the percentage of women graduates, among schools with at least 75 degree earners; the No. 1 public engineering school in the United States for the four-year graduation rate of undergraduates students; and the top engineering school in the country for the rate of Ph.D. enrollment growth. Learn more at engineering.virginia.edu.

University of Virginia School of Engineering and Applied Science

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.