Summer favorite bitter gourd genome shows unusual domestication, insight into evolution

June 16, 2020

The bitter gourd (Momordica charantia) is a summer vegetable that graces the tables of many homes and restaurants in Asia. In Okinawa and Kyushu, the southern islands of Japan, the bitter gourds grow easily and have long been said to have many health benefits. The bitter gourds are packed with vitamin C, vitamin A, folate, minerals, carotenes and catechins. It is thought to ward off the feeling of sluggishness that can accompany the summer heat and humidity.

The bitter gourd is healthy to eat, and is traditionally said to have medicinal properties. There has been research into its effectiveness in lowering blood sugar. Associate Professor Hideo Matsumura of Shinshu University and an international team elucidated the genome sequence of the bitter gourd to scientifically look into developing strains that exhibit the medicinal claims and create a better product. Historically, it has been cultivated for the unique bitter taste preferred by the region, but demand is growing for a better universal product. For that purpose, it was necessary to clarify the genetic background of the bitter gourd.

Domestication occurs when humans actively modify traits of organisms. Most domesticated plants show the significant phenotypic and genotypic differences from wild strains upon the divergence between wild and cultivar groups. However, the bitter gourd showed its divergence after it had domesticated when regional cultivar groups reflected consumer preferences in different areas, to the South Asia and Southeast Asia type.

The group sequenced the genome of 60 bitter gourd strains: 18 wild accessions, 42 cultivar strains and an outgroup (Momordica cochinchinensis) from around the world. This process of sequencing and comparisons revealed that the bitter gourd came from the wild strain in South Asia 6000 years ago. Then, the Southeastern strain diverged from the South Asian cultivar strain 800 years ago, creating the large phenotypic divergence.

Two-stage patterns of quantitative trait evolution has also been observed in maize, watermelon and tomato. However, the bitter gourd may provide a valuable nonclassic model of domestication of the intermittent weaker selection and polygenic genetic architecture that precludes the identification of strong single candidate genes. Also, according to the low divergence between the wild and cultivars in the genomic region containing gynoecious locus, directional artificial selection for sex ratio cannot overwhelm the force of balancing selection in nature.

This study is also unique in that the group reported on the chromosome-level genome assembly and genomic investigation of non-classic domestication model instead of the usual selective sweep of newly mutated Mendelian genes.
-end-
This was a joint effort of researchers from Shinshu University, National Taiwan University, National Institute of Genetics, Japan, Okinawa Prefectural Agricultural Research Center, World Vegetable Center.

Data deposition: The assembled genome is available under DNA Data Bank of Japan, accession nos. BLBB01000001-BLBB01000193. The PacBio reads were submitted under DNA Data Bank of Japan, accession no. DRA009109. The Illumina reads of the OHB3-1 genome accession was submitted under DNA Data Bank of Japan, accession no. DRA009106 . Population resequencing Illumina reads were submitted under NCBI BioProject PRJNA578358.

Shinshu University

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.