Mangroves at risk of collapse if emissions not reduced by 2050, international scientists predict

June 16, 2020

An international research team comprising scientists from the University of Hong Kong, the Nanyang Technological University, Singapore (NTU Singapore), Macquarie University and the University of Wollongong (Australia) as well as Rutgers University (USA) has predicted that mangroves will not be able to survive with rising sea-level rates reached by 2050, if emissions are not reduced. The team's findings were recently published in one of the world's top peer-reviewed academic journal Science.

Using sedimentary archives from the Earth's past, researchers estimated the probability of mangrove survival under rates of sea-level rise corresponding to two climate scenarios - low and high emissions.

When rates of sea-level rise exceeded 6 mm per year, similar to estimates under high emissions scenarios for 2050, the researchers found that mangroves very likely (more than 90% probability) stopped keeping pace. In contrast, mangroves can survive sea-level rise by building vertically when the rise remains under 5 mm per year, which is projected for low emissions scenarios during the 21st century.

The threshold of 6 mm per year is one that can be 'easily surpassed' on tropical coastlines - if society does not make concerted efforts to cut carbon emissions, said lead investigator of the study, Professor Neil Saintilan, from the Department of Earth and Environmental Sciences at Macquarie University.

Professor Saintilan said, "We know that sea-level rise is inevitable due to climate change, but not much is known about how different rates of sea-level rise affect the growth of mangroves, which is an important ecosystem for the health of the earth."

"Most of what we know about the response of mangroves to rising sea level comes from observations over the past several years to decades when rates of rise are slower than projected for later this century. This research offers new insights because we looked deeper into the past when rates of sea-level rise were rapid, reaching those projected under high emissions scenarios," said Dr Nicole Khan, Assistant Professor of Department of Earth Sciences, The Unviersity of Hong Kong.

Why mangroves matter

With their iconic roots that rise from under the mud, mangrove stands grow in a process called vertical accretion. This feature is crucial to the ecosystem as it helps to soak up greenhouse gas emissions (carbon sequestration) at densities far greater than other forests, and provides a buffer between the land and sea - helping protect people from flooding on land.

The study, which covered 78 locations over the globe, explores how mangroves responded as the rate of sea-level rise slowed down from over 10 mm per year 10,000 years ago to nearly stable conditions 4,000 years later. The drawdown of carbon as mangrove forests expanded over this time period contributed to lower greenhouse gas concentrations.

The study found that mangroves will naturally encroach inland if its ability to vertically accrete is hindered.

"Our results underscore the importance of adopting coastal management and adaptation measures that allow mangroves to naturally expand into low-lying coastal areas to protect these valuable ecosystems," said Dr Khan.

Professor Benjamin Horton, Chair of the Asian School of the Environment at NTU Singapore, who co-authored the paper, said, "In 30 years, if we continue upon a high-emissions trajectory, essentially all mangroves, including those across southeast Asia, will face a high risk of loss."

"This research therefore highlights yet another compelling reason why countries must take urgent action to reduce carbon emissions. Mangroves are amongst the most valuable of natural ecosystems, supporting coastal fisheries and biodiversity, while protecting shorelines from wave and storm attack across the tropics," Professor Horton added.
-end-
Paper titled "Thresholds of mangrove survival under rapid sea-level rise", published in Science, June 5 2020.

Images download and captions: https://www.scifac.hku.hk/press

The University of Hong Kong

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.