Nav: Home

How does our brain trigger different sighs? New findings could provide answers

June 16, 2020

One group of neurons controls various types of sighing, but they receive their instructions from different areas of the brain depending on the reason for the sigh, according to a study scheduled to publish June 16 in the journal Cell Reports.

Humans and other mammals sigh automatically once every few moments­ to maintain proper lung function. This so-called basal sighing is part of the normal breathing process and happens automatically, without us having to think about it. But beyond serving an essential physiological purpose, sighs also occur as behavioral responses to emotions ranging from stress and annoyance to relief.

"We want to understand how all of these diverse inputs, both emotional and physiological, lead to the same behavioral output," said Peng Li, a physiologist and assistant professor at the University of Michigan Life Sciences Institute.

Understanding the brain's control of emotions is a central goal of neurobiology and psychiatry, but it is difficult due to the challenges in teasing out emotional brain states and their complex outputs.

Because sighs offer a simple, measurable output from the brain, Li and his colleagues use them to learn more about how neural circuits communicate to regulate behavioral responses. They investigate how distinct neural circuits enable the brain to control sighing and breathing in different contexts, by studying the circuits in mice--which also exhibit both basal and emotional sighing and have brains that are architecturally similar to those of humans.

Previously, Li and colleagues identified the neurons and pathways that regulate basal sighing. In this newest study, the researchers traced up from these so-called NMB-neurons (short for neurons expressing Neuromedin B) to see what signals they were receiving when mice were under stress, and found a dozen forebrain regions that send direct inputs to the sigh-control center.

When the mice were confined to a small space, inducing a claustrophobic-like state, their sighing rate increased by two to three times. Using genetic tools, the researchers identified another type of neurons in one of the forebrain regions, called hypocretin-expressing (HCRT) neurons, that were firing under stress and sending signals to the NMB-neurons. The researchers then artificially activated the HCRT-neurons, without confining the mice, and saw the same change in sighing rate.

When the researchers silenced the NMB-neurons, both basal sighing and stress-induced sighing drastically decreased in the mice. When they silenced only the HCRT-neurons, however, only the stress-induced sighing decreased while basal sighing was unaffected.

The researchers found that HCRT-neurons also were responsible for an increased breathing rate when the mice were under confinement stress. Since NMB-neurons only control sighing, and not regular breathing, this finding indicates that the HCRT-neurons are sending signals to other parts of the brain simultaneously to activate different stress-induced behaviors.

"So we've found the circuit that regulates all types of sighing, but activates sighs for different reasons using input signals from different parts of the brain. And we found another group of neurons that induces sighing in response to this claustrophobic stress, but also regulates other claustrophobia-related outputs," said Li, who is also an assistant professor at the U-M School of Dentistry and Medical School.

"These findings give us clues about how the brain is wired to control various behavioral and physiological responses to emotions."
-end-
Link to Image: https://drive.google.com/drive/folders/1581ntCRmmtBu_fB52rJ70vioms8WVH4D

The research was supported by the Howard Hughes Medical Institute, U-M, the Walter V. and Idun Berry Foundation and the Francis Family Foundation. In addition to Li, study authors were Xuenan Wang and Chrystian Phillips of U-M and Shi-Bin Li, Lindsay Schwarz, Liqun Luo, Luis de Lecea and Mark Krasnow of Stanford University and Howard Hughes Medical Institute.

The work performed for this study was approved by the U-M Institutional Animal Care & Use Committee and the Stanford University Administrative Panel on Laboratory Animal Care.

Study available once embargo lifts: Brain circuit of claustrophobia-like behavior in mice identified by upstream tracing of sighing (DOI: 10.1016/j.celrep.2020.1077790)

Peng Li

University of Michigan

Related Stress Articles:

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.
Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.
How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.