Honeybee lives shortened after exposure to two widely used pesticides

June 16, 2020

CORVALLIS, Ore. - The lives of honeybees are shortened - with evidence of physiological stress - when they are exposed to the suggested application rates of two commercially available and widely used pesticides, according to new Oregon State University research.

In a study published in the journal PLOS ONE, honeybee researchers in OSU's College of Agricultural Sciences found detrimental effects in bees exposed to Transform and Sivanto, which are both registered for use in the United States and were developed to be more compatible with bee health.

The western honeybee is the major pollinator of fruit, nut, vegetable and seed crops that depend on bee pollination for high quality and yield.

Coupled with other stressors such as varroa mites, viruses and poor nutrition, effects from these pesticides can render honeybees incapable of performing their tasks smoothly. Beekeepers and some environmental groups have raised concerns in recent years about these insecticides and potential negative effects on bees.

According to the researchers, this is the first study to investigate "sub-lethal" effects of sulfoxaflor, the active ingredient in Transform, and flupyradifurone, the active ingredient in Sivanto. Sub-lethal effects mean that the bees don't die immediately, but experience physiological stress resulting in shortened lifespan.

In the case of Transform, the bees' lives were severely shortened. A majority of the honeybees exposed to Transform died within six hours of being exposed, confirming the severe toxicity of the pesticide to bees when exposed directly to field application rates recommended on the label, the researchers said.

Study lead author Priyadarshini Chakrabarti Basu, a postdoctoral research associate in the Honey Bee Lab in OSU's College of Agricultural Sciences, emphasized that the researchers aren't calling for Sivanto or Transform to be taken off the market.

"We are suggesting that more information be put on the labels of these products, and that more studies need to be conducted to understand sublethal effects of chronic exposure," Basu said.

Sivanto and Transform are used on crops to kill aphids, leaf hoppers and whiteflies, among other pests. Many of these same crops attract bees for pollination. There are some restrictions on their use. For example, Transform can't be applied to crops in bloom, for example.

Honeybees might be exposed indirectly through pesticide drift, said study co-author Ramesh Sagili, associate professor of apiculture and honeybee Extension specialist in OSU's College of Agricultural Sciences.

"The average life span of a worker honeybee is five to six weeks in spring and summer, so if you are reducing its life span by five to 10 days, that's a huge problem," Sagili said. "Reduced longevity resulting from oxidative stress could negatively affect colony population and ultimately compromise colony fitness."

For the study, the researchers conducted two contact exposure experiments: a six-hour study and a 10-day study in May 2019. The honeybees were obtained from six healthy colonies at the OSU apiaries. In each experiment, groups of 150 bees were placed in three cages. One group was exposed to Transform, a second to Sivanto and the third was a control group that wasn't exposed to either pesticide.

Honeybee mortality, sugar syrup and water consumption, and physiological responses were assessed in bees exposed to Sivanto and Transform and compared to bees in a control group. Mortality in each cage was recorded every hour for the six-hour experiment and daily for the 10-day experiment.

While Sivanto was not directly lethal to honeybees following contact exposure, the 10-day survival results revealed that field-application rates of Sivanto reduced adult survival and caused increased oxidative stress and apoptosis in the honey bee tissues. This suggests that even though Sivanto is apparently less toxic than Transform, it might also reduce honeybee longevity and impart physiological stress, according to the study authors.
-end-
Co-authors on the study included graduate student Emily Carlson and faculty research assistant Hannah Lucas, who both conduct research in the Honey Bee Lab; and Andony Melathopoulos, assistant professor and pollinator health Extension specialist.

Oregon State University

Related Pesticides Articles from Brightsurf:

More plant diversity, less pesticides
Increasing plant diversity enhances the natural control of insect herbivory in grasslands.

In pursuit of alternative pesticides
Controlling crop pests is a key element of agriculture worldwide, but the environmental impact of insecticides is a growing concern.

Two pesticides approved for use in US harmful to bees
A previously banned insecticide, which was approved for agricultural use last year in the United States, is harmful for bees and other beneficial insects that are crucial for agriculture, and a second pesticide in widespread use also harms these insects.

Dingoes have gotten bigger over the last 80 years - and pesticides might be to blame
The average size of a dingo is increasing, but only in areas where poison-baits are used, a collaborative study led by UNSW Sydney shows.

Pesticides can protect crops from hydrophobic pollutants
Researchers have revealed that commercial pesticides can be applied to crops in the Cucurbitaceae family to decrease their accumulation of hydrophobic pollutants, thereby improving crop safety.

Honeybee lives shortened after exposure to two widely used pesticides
The lives of honeybees are shortened -- with evidence of physiological stress -- when they are exposed to the suggested application rates of two commercially available and widely used pesticides.

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.

A proposal to change environmental risk assessment for pesticides
Despite regulatory frameworks designed to prevent environmental damage, pesticide use is still linked to declines in insects, birds and aquatic species, an outcome that raises questions about the efficacy of current regulatory procedures.

SDHI pesticides are toxic for human cells
French scientists led by a CNRS researcher have just revealed that eight succinate dehydrogenase inhibitor pesticide molecules do not just inhibit the SDH activity of fungi, but can also block that of earthworms, bees, and human cells in varying proportions.

Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.

Read More: Pesticides News and Pesticides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.