Loss of lipid-regulating gene fuels prostate cancer spread

June 16, 2020

Johns Hopkins Kimmel Cancer Center researchers from the Department of Radiation Oncology and Molecular Radiation Sciences identified a lipid-regulating protein that conveys what the researchers describe as "superpowers" onto prostate cancer cells, causing them to aggressively spread.

In studies of human prostate cancer cell and stromal cell lines, when the lipid-regulating protein, called CAVIN1, was removed from stromal cells -- the connective tissue cells in and around tumors -- the cells no longer used the lipids. Instead, cancer cells feasted on lipids in the environment, using them as fuel, including to make hormones that feed the cancer.

The findings were reported June 3 in the journal Molecular Cancer Research.

"We know that aggressive behavior of tumors, such as rapid growth and metastasis, does not happen alone, so we wanted to find out the role of the tumor microenvironment, and specifically the interaction between prostate tumor cells and stromal cells, in increasing cancer growth," says Marikki Laiho, M.D., Ph.D., director of the Division of Molecular Radiation Sciences and professor of radiation oncology and molecular radiation sciences at the Johns Hopkins University School of Medicine, and senior author of the study.

In the human cell line experiments, when the researchers took CAVIN1 away from stromal cells called fibroblasts, the stromal cells no longer used the lipids, but the lipids remained in the environment, and to the researchers' surprise, they became a smorgasbord for the cancer cells. In every prostate cancer cell line tested, tumor cells universally had an appetite for the lipids, using them to fuel growth, strengthen the protective membrane around the cell, synthesize proteins and make testosterone to support the cancer's growth, says Jin-Yih Low, Ph.D., first author and a research fellow in the Department of Radiation Oncology and Molecular Radiation Sciences.

"As a consequence, the tumor cells behaved more aggressively, exhibiting invasive and metastatic behavior," says Low. "Just having access to the lipids gave the tumor cells more power. The tumor is the same tumor, but the behavior of the tumor changes."

In addition, when the stromal fibroblasts did not use the lipids, they changed, and started to secrete inflammatory molecules that altered the tumor microenvironment. Inflammation is a characteristic long known to promote cancer.

To confirm their findings, the researchers conducted similar experiments in mouse models, implanting the prostate cancer cells and stromal cells into the prostates of mice and comparing the behavior of tumors with and without CAVIN1 function in the stromal cells. Although the presence or loss of CAVIN1 did not impact the speed of tumor growth, lack of CAVIN1 caused the cancer to spread. All of the mice with tumors that did not express CAVIN1 had a twofold to fivefold increase in metastasis. The tumors also had a fortyfold to hundredfold increase in lipids and inflammatory cells.

Laiho calls the findings striking. "We suspected CAVIN1 was important but did not realize how important," she says. "Microenvironment matters, and the amount of lipids matters a lot. Just by converting the cells from a low level of lipids to a high level of lipids created a situation of rampant metastasis."

The researchers say the loss of CAVIN1 in tumor cells could potentially be used as a biomarker, alerting clinicians to a risk of metastasis. Interventions are being studied but are challenging because all cells need lipids. Any treatments aimed at inhibiting lipids would have to specifically target cancer cells. Ongoing studies are aimed at better understanding the inflammatory process and ways to stop its ability to fuel cancer spread. For example, the researchers want to understand why the inflammation draws cells, called macrophages, that further exacerbate the inflammatory process but does not attract beneficial T cells that could attack the cancer, and if lipid cells could be sending signals that affect immune checkpoints, which are the immune system's on and off switches.

CAVIN1 was first discovered in human lipodystrophy syndrome, a disorder that prevents the uptake of lipids and leaves those affected unable to make fat cells, placing them at risk of diseases including cardiovascular disease and diabetes.
In addition to Laiho and Low, investigators in the study include Nathaniel Brennen, Alan Meeker, Elina Ikonen and Brian Simons.

The research was supported by the Patrick C. Walsh Prostate Cancer Research Fund, Department of Defense CDMRP award W81XWH-17-1-0458 and the Jane and Aatos Erkko Foundation.

Laiho holds patents on RNA polymerase I inhibitors, which are managed by The Johns Hopkins University and are unrelated to this work

Johns Hopkins Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.