How the beetle got its bang

June 16, 2020

If you want to see one of the wonders of the natural world, just startle a bombardier beetle. But be careful: when the beetles are scared, they flood an internal chamber with a complex cocktail of aromatic chemicals, triggering a cascade of chemical reaction that detonates the fluid and sends it shooting out of the insect's spray nozzle in a machine-gun-like pulse of toxic, scalding-hot vapor. The explosive, high-pressure burst of noxious chemicals doesn't harm the beetle, but it stains and irritates human skin--and can kill smaller enemies outright.

The beetle's extraordinary arsenal has been held up by some as a proof of God's existence: how on earth, creationists argue, could such a complex, multistep defense mechanism evolve by chance? Now researchers at Stevens Institute of Technology in Hoboken, N.J. show how the bombardier beetle concocts its deadly explosives and in the process, learn how evolution gave rise to the beetle's remarkable firepower.

"We explain for the first time how these incredible beetles biosynthesize chemicals to create fuel for their explosions," said Athula Attygalle, a research professor of chemistry and lead author of the work, which appears today in the July 2020 issue of the Science of Nature. "It's a fascinating story that nobody has been able to tell before."

To trace the workings of the beetle's internal chemistry set, Attygalle and colleagues at University of California, Berkeley used deuterium, a rare hydrogen isotope, to tag specially synthesized chemical blends. The team led by Kipling Will then either injected the deuterium-labeled chemicals into the beetles' internal fluids, or mixed them with dog food and fed them to the beetles over a period of several days.

Attygalle's team sedated the bugs by popping them in the freezer, then gently tugged at their legs, annoying the sleepy insects until they launched their defensive sprays onto carefully placed filter papers. The team also dissected some beetles, using human hairs to tie closed the tiny ducts linking their chemical reservoirs and reaction chambers, and sampling the raw chemicals used to generate explosions.

Using mass spectrometers, Attygalle checked the samples sent to Stevens for deuterium-labeled products, enabling him to figure out exactly which chemicals the beetles had incorporated into their bomb-making kits. "People have been speculating about this for at least 50 years, but at last we have a clear answer," Attygalle said. "It turns out that the beetles' biochemistry is even more intricate than we'd thought."

Previously, researchers had assumed that two toxic, benzene-like chemicals called benzoquinones found in the beetles' spray were metabolized from hydroquinone, a toxic chemical that in humans can cause cancer or genetic damage. The team at Stevens showed that in fact just one of the beetle's benzoquinones derived from hydroquinone, with the other springing from a completely separate precursor: m-cresol, a toxin found in coal tar.

It's fascinating that the beetles can safely metabolize such toxic chemicals, Attygalle said. In future studies, he hopes to follow the beetles' chemical supply chain further upstream, to learn how the precursors are biosynthesized from naturally available substances.

The team's findings also show that the beetles' explosives rely on chemical pathways found in many other creepy-crawlies. Other animals such as millipedes also use benzoquinones to discourage predators, although they lack the bombardier's ability to detonate their chemical defenses. Evolutionarily distant creatures such as spiders and millipedes use similar strategies, too, suggesting that multiple organisms have independently evolved ways to biosynthesize the chemicals.

That's a reminder that the bombardier beetle, though remarkable, is part of a rich and completely natural evolutionary tapestry, Attygalle said. "By studying the similarities and differences between beetles' chemistry, we can see more clearly how they and other species fit together into the evolutionary tree," he explained. "Beetles are incredibly diverse, and they all have amazing chemical stories to tell."
-end-


Stevens Institute of Technology

Related Beetles Articles from Brightsurf:

Beetles cooperate in brood care
Ambrosia beetles are fascinating: they practice agriculture with fungi and they live in a highly developed social system.

"Helper" ambrosia beetles share reproduction with their mother
A new study shows for the first time that Xyleborus affinis beetles are cooperative breeders, where females disperse to found new nests or stay to help their mother raise siblings, while also reproducing themselves.

Tiny beetles a bellwether of ecological disruption by climate change
New research shows that as species across the world adjust where they live in response to climate change, they will come into competition with other species that could hamper their ability to keep up with the pace of this change.

Scientists reconstruct beetles from the Cretaceous
An international research team led by the University of Bonn (Germany) and Palacky University (Czech Republic) has examined four newly found specimens of the Mysteriomorphidae beetle using computer tomography and has been able to reconstruct them.

Pine beetles successful no matter how far they roam -- with devastating effects
Whether they travel only a few metres or tens of kilometres to a new host tree, female pine beetles use different strategies to find success--with major negative consequences for pine trees, according to new research by University of Alberta biologists.

Beetles changed their diet during the Cretaceous period
Like a snapshot, amber preserves bygone worlds. An international team of paleontologists from the University of Bonn has now described four new beetle species in fossilized tree resin from Myanmar, which belong to the Kateretidae family.

Jewel beetles' sparkle helps them hide in plain sight
Bright colors are often considered an evolutionary tradeoff in the animal kingdom.

Bark beetles control pathogenic fungi
Pathogens can drive the evolution of social behaviour in insects.

Sexual competition helps horned beetles survive deforestation
A study of how dung beetles survive deforestation in Borneo suggests that species with more competition among males for matings are less likely to go extinct, according to research led by scientists from Queen Mary University of London and Nanyang Technological University, Singapore.

Dung beetles get wind
Researchers have shown for the first time that these insects use different directional sensors to achieve the highest possible navigational precision in different conditions.

Read More: Beetles News and Beetles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.