Nav: Home

The novel mechanisms for inflammation and cancer induced by HTLV-1

June 16, 2020

A research group from Kumamoto University, Japan, has clarified the mechanism by which human T-cell leukemia virus type 1 (HTLV-1) causes inflammation and oncogenesis. The action of the viral gene HTLV-1 bZIP factor (HBZ) changes the reactivity of immune cells (T cells) infected with HTLV-1 to cytokines, which results in inflammation. This research is expected to contribute to the understanding of the mechanisms of HTLV-1-induced malignant tumors (ATL) and HTLV-1-related inflammatory diseases, and lead to the development of new treatment and prevention strategies.

HTLV-1 is a virus that causes a malignancy of lymphocytes called adult T-cell leukemia (ATL) and a chronic neurological disease called HTLV-1 associated myelopathy (HAM). The virus causes these diseases by increasing the number of infected lymphocytes in the body. Most HTLV-1 infected individuals remain asymptomatic, but in about 2-5% of infected people, infected cells become malignant and develop ATL.

Researchers genetically engineered HBZ transgenic mice (HBZ-Tg) to analyze the function of HBZ; this murine model expresses HBZ in CD4+ T lymphocytes. In their model, CD4+CD25+Foxp3+ T cells increased (these cells also increase in HTLV-1-infected individuals), and the mice developed inflammation and malignant lymphoma. The researchers thus hypothesized that HBZ plays an important role in the pathogenicity of HTLV-1.

In a previous study, the researchers found that HBZ-Tg mice had both inflammation and T-cell lymphoma. The mice with severe dermatitis tended to develop lymphoma. Since an inflammatory cytokine, IL-6, is known to promote carcinogenesis through inflammation in several types of cancers, the researchers thought that IL-6 could also promote oncogenesis in HBZ-Tg and ATL.

To evaluate the roles of IL-6 in the pathogenesis of HBZ, researchers created HBZ-Tg mice that were unable produce IL-6 (HBZ-Tg/IL-6 knockout mice). Unexpectedly, the incidence of inflammation and lymphoma in HBZ-Tg/IL-6 knockout mice significantly increased compared with HBZ-Tg mice, revealing that IL-6 has suppressive effects on the pathogenicity of HBZ. IL-6 is a cytokine with various functions and is known to inhibit the differentiation of regulatory T cells (Treg) that have a suppressive function on immune reaction. Researchers previously reported that Treg-like cells increased with HBZ-Tg and were involved in the development of inflammation in HBZ-Tg mice. This indicates that, in HBZ-Tg mice, IL-6 deficiency further promotes Treg differentiation and accelerates the development of diseases.

On the other hand, HBZ-Tg mice were found to produce the immunosuppressive cytokine, IL-10. In addition, IL-10 promoted the proliferation of T cells derived from HBZ-Tg mice. Since normal mouse T cells were not affected by IL-10 stimulation, HBZ is thought to modulate IL-10 stimulation and promotes cell proliferation. Moreover, HBZ was found to interact with the cellular transcription factors STAT1 and STAT3--which work downstream of the IL-10 signal--and disrupt their transcriptional activities. This suggested a previously unknown mechanism of HBZ-mediated pathogenesis by perturbing the reactivity of CD4-positive T cells to IL-6 and IL-10.

"Our analysis brings us closer to finding the mechanisms which HTLV-1 uses to promote growth of infected cells and sustain persistent infection. We expect that our work will contribute toward the elucidation of the molecular mechanisms of HTLV-1 associated diseases," said Associate Professor Jun-ichirou Yasunaga, who lead the study. "IL-6 and IL-6 receptors are therapeutic targets for autoimmune diseases such as rheumatoid arthritis, and inhibitors for them are currently in clinical use. Our results alert us to the possibility that the blockade of IL-6/IL-6R signaling increases the risk of disease progression in some HTLV-1-infected individuals. Careful evaluations of the risk and efficacy of such a treatment are necessary."

This research was posted online in the Proceedings of the National Academy of Science on 26 May 2020.

[Source] Higuchi, Y., Yasunaga, JI., Mitagami, Y., Tsukamoto, H., Nakashima, K., Ohshima, K., & Matsuoka, M. (2020). HTLV-1 induces T cell malignancy and inflammation by viral antisense factor-mediated modulation of the cytokine signaling. Proceedings of the National Academy of Sciences, 201922884. doi:10.1073/pnas.1922884117

Kumamoto University

Related Lymphoma Articles:

A new immunotherapeutic agent for children and adolescents with advanced lymphoma
The excellent results of the phase III international paediatric study, Inter-B-NHL ritux 2010, have been published in the New England Journal of Medicine.
Lymphoma's different route revealed
Researchers at the MDC observe the very early stages of blood vessel development in lymph node tumors.
Old weapon, new target: Dasatinib against angioimmunoblastic T-cell lymphoma
Researchers from the University of Tsukuba have shown by in vivo experimentation on a mouse model that angioimmunoblastic T-cell lymphoma is highly dependent on T-Cell Receptor Signaling.
Suspect eliminated as a therapeutic target in B cell lymphoma
Australian researchers have narrowed the focus on which survival proteins are important for the survival of B cell lymphomas, eliminating the protein BCL-W from the 'suspect list'.
New factor in the development of childhood lymphoma
The immune system is highly complex and a detailed understanding of many underlying mechanisms is still lacking.
CNIO discovers a connection between nutrients and follicular lymphoma
CNIO researchers have identified the role played by mTOR pathway as the origin of follicular lymphoma and propose the exploration in future studies of a possible therapeutic strategy using a drug that is already being used in clinical practice to treat other tumors.
Antibiotics can inhibit skin lymphoma
New research from the LEO Foundation Skin Immunology Research Center at the University of Copenhagen shows, surprisingly, that antibiotics inhibit cancer in the skin in patients with rare type of lymphoma.
Association of BRCA2 mutations with risk of childhood lymphoma
This research letter reports on the association of BRCA2 gene mutations and potential risk for pediatric or adolescent lymphoma.
Why Hodgkin's lymphoma cells grow uncontrollably
Although classical Hodgkin's lymphoma is generally easily treatable today, many aspects of the disease still remain a mystery.
New tool to find and fight most dangerous types of lymphoma
UK scientists have found a new way to identify people with the most aggressive types of lymphoma who are less likely to respond to standard drugs.
More Lymphoma News and Lymphoma Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.