New insight into origin of superconductivity in magnesium diboride

June 17, 2002

UPTON, NY -- A team of scientists from the U.S. Department of Energy's Brookhaven National Laboratory, the U.S. Department of Commerce's National Institute of Standards and Technology (NIST), and the University of Oslo in Norway has provided new insight into the superconductivity of magnesium diboride (MgB2), an unusual superconductor discovered only last year. The new result appears in the June 17, 2002 issue of Physical Review Letters.

Understanding the origin of superconductivity -- the ability of some materials to conduct electricity without losing energy -- will help scientists improve magnetic resonance imaging (MRI) and the efficiency of electric power transmission, and build smaller, more powerful electronic devices.

"Scientists usually assume that superconductivity arises from electrons coupling in pairs," said Yimei Zhu, a physicist at Brookhaven's Advanced Electron Microscopy Facility and lead author of the study. "Though this is the case for most superconductors, it has not been shown yet how electrons contribute to superconductivity in magnesium diboride. So we decided to look more closely at this material's electronic structure."

Since the discovery of superconductivity in MgB2, Brookhaven theoretical scientists led by physicists James Davenport and Guenter Schneider have made extensive calculations involving interactions between electrons or between electron "holes," which are empty locations that could be filled by electrons. According to one of the most prevalent theories, superconductivity in MgB2 arises from interactions between holes. Also, because MgB2 is made of alternating planes of boron and magnesium atoms aligned parallel to one another, these holes are expected to interact more easily within the planes than between adjacent planes.

"Compared to other superconductors, MgB2 has a relatively simple structure," said Johan Tafto, a physicist at the University of Oslo and one of the team members. "So scientists hope to get more insight into superconductivity by focusing their attention on a simple compound rather than on more complex ones."

To test the theoretical predictions about MgB2, the scientists examined the electron and hole structure of the substance using two complementary techniques. In the first technique, called x-ray absorption spectroscopy, the scientists used very intense x-rays generated by the National Synchrotron Light Source (NSLS) at Brookhaven and a unique NIST x-ray detector. When the x-rays enter the sample, the electrons inside the sample absorb the x-rays and are ejected out of their original positions.

"When these ejected electrons fall into the holes, they reveal the number and density of these holes in the MgB2 sample," said Daniel Fischer, a physicist at NIST who has been working with the x-ray absorption technique for the last 18 years at the NSLS.

The second technique, called electron energy loss spectroscopy, uses state-of-the-art transmission electron microscopes (TEMs) at Brookhaven. Unlike optical microscopes, which use visible light, an electron microscope projects electrons toward the sample. These electrons transfer some of their energy to electrons in the sample, which bump around the sample atoms and reveal the positions of electronic holes in the MgB2 sample.

"We needed to use both techniques because they complement each other very well and lead to a very accurate determination of the distribution and number of electron holes in magnesium diboride," said Zhu, who leads Brookhaven's TEM group and has been investigating the electronic structure of materials at the nanoscale (one billionth of a meter) for the last 20 years.

The results agree with the theoretical predictions by showing that interactions between holes in the boron planes do occur in MgB2, and that superconductivity stems from such interactions. Said Tafto, "As we gain more understanding of the properties of magnesium diboride at the atomic level, I am confident that, in the near future, we will be able to relate them to macroscopic properties such as superconductivity -- and maybe explain the origin of superconductivity in general."
-end-
This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields, and the U.S. Department of Commerce.

For a web version of this news release with images, go to: http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr061702.htm

The U.S. Department of Energy's Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Yimei Zhu lives in Stony Brook, New York.

DOE/Brookhaven National Laboratory

Related Superconductivity Articles from Brightsurf:

New kind of superconductivity discovered
Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution.

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.

New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.

Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.

Read More: Superconductivity News and Superconductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.