EuroDYNA leaves healthy genomic research ecosystem as legacy

June 17, 2008

Europe's position as a major player in genome research has been boosted by the European Science Foundation's three-year EUROCORES programme EuroDYNA. As it draws to a close, EuroDYNA (Dynamic Nuclear Architecture and Chromatin Function) is leaving behind a healthy European ecosystem of interacting multidisciplinary research projects focused on the structure of the cellular nucleus and mechanisms governing gene expression.

The greatest benefit of EuroDYNA has been in stimulating interaction among the various Collaborative Research Projects (CRPs) that had already been established, according to Graham Tebb, a scientific administrator for genetics, microbiology, biotechnology and cell biology at the FWF (Fonds zur Förderung der Wissenschaftlichen Forschung), the Austrian agency for funding basic research. "I was pleased to see the links between the CRPs," said Tebb. "That's the real added value."

The success of EuroDYNA in creating European momentum behind research into chromatin structure and gene regulation was widely acknowledged at the programme's third and final meeting, held at the Wellcome Trust Conference Centre near Cambridge, UK, late May 2008. "The ESF grant had a galvanising effect on our project, increasing credibility on a local, national and international level," said Colin Logie from Nijmegen University in the Netherlands, head of one of the EuroDYNA projects, "Chromatin Higher Order Dynamics: A single molecule approach". Logie pointed out that research into the dynamic structure of chromatin, the nuclear complex of proteins and DNA where 99.99% of all genes reside in higher organisms, requires increasing interaction between biologists and physicists, which has been accomplished within his project, leading to new insights into chromatin structure.

Logie and other project leaders also highlighted an issue common to most if not all projects relating to genomic structure, which is the high cost of meeting the growing genome-wide profiling challenge. Rene Ketting from the Hubrecht Institute for Developmental Biology in Utrecht, in the Netherlands, and David Shore from the University of Geneva's Department of Molecular Biology, suggested there should in future be separate provision for the cost of protein chromosomal location by ChIP-seq, genome-wide RNA profiling and the concomitant bioinformatics analyses, which otherwise could easily consume budgets and reduce the resources available for dedicated laboratory experiments. Alternatively at least some aspects of genomic profiling could be provided as a service by major funding agencies or research councils. The role of EuroDYNA not just in fostering collaboration between disciplines and countries, but also in highlighting such future funding issues, was acknowledged by many of the project leaders and scientists present at the final conference.

The best measure of EuroDYNA's success though lies in the cross fertilisation between different multi-disciplinary CRPs, some of which were sparked by unexpected breakthroughs. A good example is the serendipitous discovery of the close and important relationship between two proteins, cohesin and CTCF, in regulating the expression and transcription of genes. This subsequently brought two separate groups within EuroDYNA together, one from the Institute of Molecular Pathology (IMP) in Vienna on the control of the chromosome structure by Cohesin, and the other from Erasmus Medical Centre in Rotterdamworking on the role of the zinc finger CTCF proteins in the cell cycle and differentiation processes. The discovery that cohesin and CTCF are intimately linked was made by the group of Jan-Michael Peters at the IMP. Subtle deficiencies in this relationship might lead to a group of diseases known as "cohesinopathies" that are more common than once thought because they are frequently misdiagnosed. One such disease is Cornelia de Lange syndrome, causing various developmental abnormalities such as low birth weight, delayed growth, and small head size.

EuroDYNA, and indeed the ESF in general, has made a major contribution to the development of multinational, multidisciplinary funding models that reduce the bureaucratic and logistical hurdles that scientists need to overcome both in complex and smaller scale projects, whenever European collaboration is required. However some scientists at the EuroDYNA conference argued that the ESF could stimulate collaboration even further by extending the timespan of projects from three to four or even five years, potentially with a mid-term review after three years. This was recommended by Juan Ausio from the Department of Biochemistry and Microbiology, University of Victoria. Ausio, who is a member of the EuroDYNA review panel, pointed out that in Canada funding for scientific projects typically runs for five years, and gives the scientists longer to establish lasting collaborations and derive real value from them. "It saves a lot of resources and effort," said Ausio. "It especially decreases the burden on the reviewers' side and it decreases significantly the administrative effort of the funding agencies."

Perhaps then the most lasting legacy of EuroDYNA is to leave behind a more secure structure for funding of European projects, even if some of the detail remains to be sorted out.
-end-
Notes to editors:

The aim of the European Collaborative Research (EUROCORES) Scheme is to enable researchers in different European countries to develop collaboration and scientific synergy in areas where European scale and scope are required to reach the critical mass necessary for top class science in a global context. The scheme provides a flexible framework which allows national basic research funding and performing organisations to join forces to support excellent European research in and across all scientific areas. The European Science Foundation (ESF) provides scientific coordination and support for networking activities of funded scientists currently through the EC FP6 Programme, under contract no. ERAS-CT-2003-980409. Research funding is provided by participating national organisations.

The European Science Foundation (ESF) provides a platform for its Member Organisations to advance European research and explore new directions for research at the European level. Established in 1974 as an independent non-governmental organisation, the ESF currently serves 77 Member Organisations across 30 countries.

For further information on EuroDYNA, please go to www.esf.org/eurodyna

For further information on the EUROCORES Scheme, please go to www.esf.org/eurocores

Science contact:
Dr. Astrid Lunkes
Tel: 0033 388 762172
alunkes@esf.org

European Science Foundation

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.