When palm trees gave way to spruce trees

June 17, 2009

For climatologists, part of the challenge in predicting the future is figuring out exactly what happened during previous periods of global climate change.

One long-standing climate puzzle relates to a sequence of events 33.5 million years ago in the Late Eocene and Early Oligocene. Profound changes were underway. Globally, carbon dioxide levels were falling and the hothouse warmth of the dinosaur age and Eocene Period was waning. In Antarctica, ice sheets had formed and covered much of the southern polar continent.

But what exactly was happening on land, in northern latitudes? When and how did Northern glaciation begin, and what does this knowledge add to the understanding of the relationship between carbon dioxide levels and today's climate?

An international team that included Dr. David Greenwood, an NSERC-funded researcher at Brandon University, now provides some of the very first detailed answers, and they come from an unusual source.

"Fossils of land plants are excellent indicators of past climates," said Dr. Greenwood. "But the fossil plant localities from the Canadian Arctic and Greenland don't appear to record this major climate change, and pose problems for precisely dating their age, so we needed to look elsewhere."

The "where" was in marine sediments entombed when the North Atlantic Ocean was beginning to open, and lying now at the bottom of today's Norwegian-Greenland Sea. Sediment cores taken from there contained a record of ancient spores and pollen blown from the continent to the west.

"These marine sediment cores give us a very precise chronology of the changes in the dominant land plants," said Dr. Greenwood "and since many of these species have modern relatives, we can assume that the temperatures and environments they lived in were very similar."

To arrive at a holistic picture of the climate of the transition, the researchers merged the plant data with physical information about the state of the atmosphere and ocean taken from chemical and isotopic information in the same sediments, and compared this to computer modelling of climate in the period.

"We can see that summer temperatures on land remained relatively warm throughout the Eocene/Oligocene transition, but that the period was marked by increasing seasonality," said Dr. Greenwood.

"Mean temperatures during the coldest month dropped by five degrees Celsius, to just above freezing," he said.

"This was probably not enough to create much in the way of continental ice on East Greenland," he said, "but it did wipe out palms and other subtropical trees such as swamp cypress. They were replaced by temperate climate trees such as spruces and hemlock."

The researcher said that, nonetheless, the middle period of the transition remained fairly warm. "Hickory and walnut were still present, but these became rare in the final stages," he said.

Although the march to a cooler world was gradual in northern latitudes, it was inevitable according to Dr. Greenwood.

"Changes in the earth's position in its orbit were leading a much greater seasonal range in radiation for polar regions and, overall, heat was becoming more concentrated in the tropics, largely due to a global drop in carbon dioxide levels in the atmosphere" he said.
-end-
The group's detailed record of the Eocene/Oligocene transition will appear in the June 18 issue of Nature. Further information can be found in a release from the University of Southhampton, England.

Natural Sciences and Engineering Research Council

Related Ice Sheets Articles from Brightsurf:

Ice-binding molecules stop ice growth, act as natural antifreeze
Certain molecules bind tightly to the surface of ice, creating a curved interface that can halt further ice growth.

Stem cell sheets harvested in just two days
POSTECH and Pohang Semyung Christianity Hospital joint research team develops a thermoresponsive nanotopography cell culture platform.

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Island-building in Southeast Asia created Earth's northern ice sheets
Tectonic processes are thought to have triggered past ice ages, but how?

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

What happens between the sheets?
Adding calcium to graphene creates an extremely-promising superconductor, but where does the calcium go?

Sea level rise from ice sheets track worst-case climate change scenario
Ice sheets in Greenland and Antarctica whose melting rates are rapidly increasing have raised the global sea level by 1.8cm since the 1990s, and are matching the Intergovernmental Panel on Climate Change's worst-case climate warming scenarios.

Early Mars was covered in ice sheets, not flowing rivers
A large number of the valley networks scarring Mars's surface were carved by water melting beneath glacial ice, not by free-flowing rivers as previously thought, according to new UBC research published today in Nature Geoscience.

Antarctic ice sheets capable of retreating up to 50 meters per day
The ice shelves surrounding the Antarctic coastline retreated at speeds of up to 50 meters per day at the end of the last Ice Age, far more rapid than the satellite-derived retreat rates observed today, new research has found.

First results from NASA's ICESat-2 mission map 16 years of melting ice sheets
By comparing new measurements from NASA's ICESat-2 mission with the original ICESat mission, which operated from 2003 to 2009, scientists were able to measure precisely how the Greenland and Antarctic ice sheets have changed over 16 years.

Read More: Ice Sheets News and Ice Sheets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.