Beating the radar: Getting a jump on storm prediction

June 17, 2009

MADISON -- Satellite observation of cloud temperatures may be able to accurately predict severe thunderstorms up to 45 minutes earlier than relying on traditional radar alone, say researchers at the University of Wisconsin-Madison Space Science and Engineering Center.

Scientists from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) have developed a way to measure temperature changes in the tops of clouds to improve forecast times for rapidly growing storms.

"The value of detecting and analyzing these changes is that we can get up to a 45-minute jump on radar detection of the same storm system. A 'nowcast' becomes a 'forecast,'" says CIMSS scientist Wayne Feltz.

Clouds start cooling long before radar can identify them as storms. As a warm cumulus cloud grows and expands upward into higher altitudes, it will rapidly cool. Rapid cloud-top cooling indicates that a cloud top is rising into the frigid upper reaches of the atmosphere and can reveal the formation of a severe storm.

Cloud temperatures can be measured by the wavelengths of light they radiate in the near-infrared and infrared frequencies. Current geostationary satellites -- satellites that stay over the same location on Earth -- over the U.S. can discern five different bands in these frequencies, each band revealing a different state of cloud development. Looking down from space, the satellite can determine whether the cloud top consists of liquid water, supercooled water or even ice.

By running high-speed five-minute satellite scans through a carefully designed computer algorithm, the scientists can quickly analyze cloud top temperature changes to look for signs of storm formation. "We are looking for transitions," says Feltz. "Does the cloud top consist of liquid water that is cooling rapidly? That could signal a possible convective initiation."

Feltz and other CIMSS colleagues, including Kris Bedka and National Oceanic and Atmospheric Administration (NOAA) scientist Tim Schmit, demonstrated their "Convective Initiation Nowcast" and "Cloud Top Cooling Rate" products at NOAA's annual Hazardous Weather Testbed (HWT), held May 4-June 5 at the Storm Prediction Center in Norman, Okla.

The HWT is designed to accelerate the transition of promising new meteorological insights and technologies into advance forecasting and warnings for hazardous weather events throughout the United States.

"The Hazardous Weather Testbed brings in outside experts in all areas, a melting pot of people to encourage collaboration and interactions and proposal opportunities," Feltz says. "The point of this is working with forecasters in the field -- the Weather Service, the Storm Prediction Center, the Hurricane Center -- whoever is interested in looking at more advanced satellite products."
-end-
For more information, visit http://hwt.nssl.noaa.gov/Spring_2009/.

-- Mark Hobson, 608-263-3373, mark.hobson@ssec.wisc.edu

University of Wisconsin-Madison

Related Satellite Articles from Brightsurf:

NASA satellite gives a hello to tropical storm Dolly
During the morning of June 23, the fourth system in the Northern Atlantic Ocean was a subtropical depression.

Observing phytoplankton via satellite
Thanks to a new algorithm, researchers at the AWI can now use satellite data to determine in which parts of the ocean certain types of phytoplankton are dominant.

The Internet of Things by satellite will become increasingly accessible
Thanks to the implementation of advanced random access schemes using efficient, low complexity algorithms.

Satellite broken? Smart satellites to the rescue
The University of Cincinnati is developing robotic networks that can work independently but collaboratively on a common task.

Satellite images reveal global poverty
How far have we come in achieving the UN's sustainable development goals that we are committed to nationally and internationally?

Satellite data exposes looting
Globally archaeological heritage is under threat by looting. The destruction of archaeological sites obliterates the basis for our understanding of ancient cultures and we lose our shared human past.

NASA satellite finds 16W now subtropical
NASA-NOAA's Suomi NPP satellite found 16W was still being battered by wind shear after transitioning into an extra-tropical cyclone.

How far to go for satellite cloud image forecasting into operation
Simulated satellite cloud images not only have the visualization of cloud imagery, but also can reflect more information about the model.

NASA confirms re-discovered IMAGE satellite
The identity of the satellite re-discovered on Jan. 20, 2018, has been confirmed as NASA's IMAGE satellite.

Satellite keeps an eye on US holiday travel weather
A satellite view of the US on Dec. 22 revealed holiday travelers on both coasts are running into wet weather.

Read More: Satellite News and Satellite Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.