Nav: Home

Protein plays unexpected role in embryonic stem cells

June 17, 2015

LA JOLLA, Calif. -- What if you found out that pieces of your front door were occasionally flying off the door frame to carry out chores around the house? That's the kind of surprise scientists at the Salk Institute experienced with their recent discovery that nucleoporins -- proteins that act as cellular 'doorways' to help manage what goes in and out of a cell's nucleus -- are actually much bigger players in expressing genes than previously thought.

The finding, published June 16 in the journal Genes & Development, shows that nucleoporins play an important role in maintaining embryonic stem cells before they begin to develop into specific tissues. This discovery gives a new understanding to genetic diseases that are caused by mutations in these proteins. One nucleoporin protein in particular has a dramatic -- and unanticipated -- function in the formation of neurons from stem cells.

'We've shone a new light on this class of proteins,' says Martin Hetzer, a professor in Salk's Molecular and Cell Biology Laboratory and senior author of the new paper. 'I hope researchers start to accept and realize that nucleoporins are more than just transport proteins.'

Nucleoporins -- of which there are about 30 versions -- are typically part of nuclear pore complexes, giant structures that connect the inside of a cell's nucleus to the outer cytoplasm. In 2010, Hetzer's team first uncovered hints that nucleoporins may also have a role in regulating the timing of when genes inside the nucleus are transcribed into proteins during a cell's development. But exactly what that role might be was unclear.

In the new work, Hetzer and his colleagues focused on one particular nucleoporin called Nup153, which is known to rapidly move on and off of the nuclear pore complex, suggesting it might be doing something other than providing structural support to the pore.

The researchers turned to mouse embryonic stem cells -- cells that have the potential to differentiate into any cell type in the body -- and deleted Nup153. They expected that if Nup153 played a key role in cell differentiation, then removing it from stem cells would stop them from differentiating. Instead, the opposite happened.

'The big surprise was that when we took out this gene, the stem cells started to differentiate,' said Hetzer. 'And not only did they start to differentiate, but they started to differentiate into neurons.'

Nup153, researchers discovered, put the brakes on certain genes that need to be turned on for stem cells to turn into brain cells. When the brakes are lifted, the stem cells start differentiating.

'This study not only revealed a critical function for nucleoporins in mediating the undifferentiated state of embryonic stem cells by silencing neural genes, but also introduced new mechanistic directions for elucidating the role of these proteins during mammalian development,' says Filipe Jacinto, a postdoctoral researcher in Hetzer's lab and first author of the paper.

Hetzer suspects that other nucleoporins also have roles in gene expression control, but cautions that the roles could be very different -- each nucleoporin, he says, likely targets a different set of genes, and some might activate the genes rather than repress them.

Mutations in many nucleoporin genes has been linked to human diseases and developmental disorders, including some forms of leukemia and inherited heart problems. Until now, Hetzer says, researchers have assumed the mutations led to disease by altering the transport of proteins in and out of a cell's nucleus. 'Now, we're realizing this is probably not the only explanation,' he says. 'Many of those diseases and developmental disorders might actually be caused by the ability of these genes to regulate gene expression programs.'

His lab is planning to follow up with studies on Nup153, and exactly how it's recruited to genes, as well as investigating the developmental roles of other nucleoporins.
-end-
Chris Benner, director of the Integrative Genomics and Bioinformatics Core at the Salk Institute, also contributed to the work.

The work and the researchers involved were supported by grants from the National Institutes of Health and the National Cancer Institute.

About the Salk Institute for Biological Studies

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probes fundamental life science questions in a unique, collaborative and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines. Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Salk Institute

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.