Nav: Home

Protein plays unexpected role in embryonic stem cells

June 17, 2015

LA JOLLA, Calif. -- What if you found out that pieces of your front door were occasionally flying off the door frame to carry out chores around the house? That's the kind of surprise scientists at the Salk Institute experienced with their recent discovery that nucleoporins -- proteins that act as cellular 'doorways' to help manage what goes in and out of a cell's nucleus -- are actually much bigger players in expressing genes than previously thought.

The finding, published June 16 in the journal Genes & Development, shows that nucleoporins play an important role in maintaining embryonic stem cells before they begin to develop into specific tissues. This discovery gives a new understanding to genetic diseases that are caused by mutations in these proteins. One nucleoporin protein in particular has a dramatic -- and unanticipated -- function in the formation of neurons from stem cells.

'We've shone a new light on this class of proteins,' says Martin Hetzer, a professor in Salk's Molecular and Cell Biology Laboratory and senior author of the new paper. 'I hope researchers start to accept and realize that nucleoporins are more than just transport proteins.'

Nucleoporins -- of which there are about 30 versions -- are typically part of nuclear pore complexes, giant structures that connect the inside of a cell's nucleus to the outer cytoplasm. In 2010, Hetzer's team first uncovered hints that nucleoporins may also have a role in regulating the timing of when genes inside the nucleus are transcribed into proteins during a cell's development. But exactly what that role might be was unclear.

In the new work, Hetzer and his colleagues focused on one particular nucleoporin called Nup153, which is known to rapidly move on and off of the nuclear pore complex, suggesting it might be doing something other than providing structural support to the pore.

The researchers turned to mouse embryonic stem cells -- cells that have the potential to differentiate into any cell type in the body -- and deleted Nup153. They expected that if Nup153 played a key role in cell differentiation, then removing it from stem cells would stop them from differentiating. Instead, the opposite happened.

'The big surprise was that when we took out this gene, the stem cells started to differentiate,' said Hetzer. 'And not only did they start to differentiate, but they started to differentiate into neurons.'

Nup153, researchers discovered, put the brakes on certain genes that need to be turned on for stem cells to turn into brain cells. When the brakes are lifted, the stem cells start differentiating.

'This study not only revealed a critical function for nucleoporins in mediating the undifferentiated state of embryonic stem cells by silencing neural genes, but also introduced new mechanistic directions for elucidating the role of these proteins during mammalian development,' says Filipe Jacinto, a postdoctoral researcher in Hetzer's lab and first author of the paper.

Hetzer suspects that other nucleoporins also have roles in gene expression control, but cautions that the roles could be very different -- each nucleoporin, he says, likely targets a different set of genes, and some might activate the genes rather than repress them.

Mutations in many nucleoporin genes has been linked to human diseases and developmental disorders, including some forms of leukemia and inherited heart problems. Until now, Hetzer says, researchers have assumed the mutations led to disease by altering the transport of proteins in and out of a cell's nucleus. 'Now, we're realizing this is probably not the only explanation,' he says. 'Many of those diseases and developmental disorders might actually be caused by the ability of these genes to regulate gene expression programs.'

His lab is planning to follow up with studies on Nup153, and exactly how it's recruited to genes, as well as investigating the developmental roles of other nucleoporins.
-end-
Chris Benner, director of the Integrative Genomics and Bioinformatics Core at the Salk Institute, also contributed to the work.

The work and the researchers involved were supported by grants from the National Institutes of Health and the National Cancer Institute.

About the Salk Institute for Biological Studies

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probes fundamental life science questions in a unique, collaborative and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines. Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Salk Institute

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".