Mold unlocks new route to biofuels

June 17, 2015

Scientists at The University of Manchester have made an important discovery that forms the basis for the development of new applications in biofuels and the sustainable manufacturing of chemicals.

Based at the Manchester Institute of Biotechnology (MIB), researchers have identified the exact mechanism and structure of two key enzymes isolated from yeast moulds that together provide a new, cleaner route to the production of hydrocarbons.

Published in Nature, the research offers the possibility of replacing the need for oil in current industrial processes with a greener and more sustainable natural process.

Lead investigator Professor David Leys, explains the importance of his work: "One of the main challenges our society faces is the dwindling level of oil reserves that we not only depend upon for transport fuels, but also plastics, lubricants, and a wide range of petrochemicals. Solutions that seek to reduce our dependency on fossil oil are urgently needed."

He adds: "Whilst the direct production of fuel compounds by living organisms is an attractive process, it is currently not one that is well understood, and although the potential for large-scale biological hydrocarbon production exists, in its current form it would not support industrial application, let alone provide a valid alternative to fossil fuels."

Professor Leys and his team investigated in detail the mechanism whereby common yeast mould can produce kerosene-like odours when grown on food containing the preservative sorbic acid. They found that these organisms use a previously unknown modified form of vitamin B2 (flavin) to support the production of volatile hydrocarbons that caused the kerosene smell. Their findings also revealed the same process is used to support synthesis of vitamin Q10 (ubiquinone).

Using the Diamond synchrotron source at Harwell, they were able to provide atomic level insights into this bio catalytic process, and reveal it shares similarities with procedures commonly used in chemical synthesis but previously thought not to occur in nature.

Professor David Leys says: "Now that we understand how yeast and other microbes can produce very modest amounts of fuel-like compounds through this modified vitamin B2-dependent process, we are in a much better position to try to improve the yield and nature of the compounds produced."

In this particular study, published in the journal Nature, researchers focussed on the production of alpha-olefins; a high value, industrially crucial intermediate class of hydrocarbons that are key chemical intermediates in a variety of applications, such as flexible and rigid packaging and pipes, synthetic lubricants used in heavy duty motor and gear oils, surfactants, detergents and lubricant additives.

Professor Leys concludes: "This fundamental research builds on the MIB's expertise in enzyme systems and provides the basis for the development of new applications in biofuel and commodity chemical production. The insights from this research offer the possibility of circumventing current industrial processes which are reliant on scarce natural resources."
-end-


University of Manchester

Related Biofuels Articles from Brightsurf:

Making biofuels cheaper by putting plants to work
One strategy to make biofuels more competitive is to make plants do some of the work themselves.

How to make it easier to turn plant waste into biofuels
Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels.

Barriers and opportunities in renewable biofuels production
Researchers at Chalmers University of Technology, Sweden, have identified two main challenges for renewable biofuel production from cheap sources.

How biofuels from plant fibers could combat global warming
A study from Colorado State University finds new promise for biofuels produced from switchgrass, a non-edible native grass that grows in many parts of North America.

Calculating the CO2 emissions of biofuels is not enough
A new EU regulation aims to shrink the environmental footprint of biofuels starting in 2021.

Algae cultivation technique could advance biofuels
Washington State University researchers have developed a way to grow algae more efficiently -- in days instead of weeks -- and make the algae more viable for several industries, including biofuels.

Cutting the cost of ethanol, other biofuels and gasoline
Biofuels like the ethanol in US gasoline could get cheaper thanks to experts at Rutgers University-New Brunswick and Michigan State University.

Cellulosic biofuels can benefit the environment if managed correctly
Could cellulosic biofuels -- or liquid energy derived from grasses and wood -- become a green fuel of the future, providing an environmentally sustainable way of meeting energy needs?

Making oil from algae -- towards more efficient biofuels
The mechanism behind oil synthesis within microalgae cells has been revealed by a Japanese research team.

WSU study finds people willing to pay more for new biofuels
When it comes to second generation biofuels, Washington State University research shows that consumers are willing to pay a premium of approximately 11 percent over conventional fuel.

Read More: Biofuels News and Biofuels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.