ECDC rapid risk assessment outlines actions to reduce the spread of the mcr-1 gene

June 17, 2016

The recently recognised global distribution of the mcr-1 gene poses a substantial public health risk to the EU/EEA. The gene is widespread in several continents and has been detected in bacteria isolated from multiple different sources such as food-producing animals, food, the environment and humans.

This new mechanism of resistance to colistin is of exceptional public health concern because it further limits treatment options in patients with infections caused by multidrug-resistant (MDR) Gram-negative bacteria, and also because it is a highly mobile type of drug resistance (the gene is on a plasmid) that can spread more easily between bacteria.

MDR Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae strains that acquire the mcr-1 gene, remain susceptible to only a few antimicrobial agents, which means that infections caused by these strains are very difficult to treat and result in excess mortality. As the development of new antimicrobials is unlikely to provide a solution anytime soon, it is crucial to take measures to control the spread of mcr-1 and thus protect the activity of colistin.

Although there are still major information gaps, relating to the current prevalence of colistin resistance in human clinical isolates in the EU/EEA, as well as to the historical and current prevalence of colistin resistance due to the mcr-1 gene, the issue of further spread of mcr-1 needs to be taken seriously and be carefully monitored by EU/EEA countries.

Andrea Ammon, ECDC Acting Director, said: "the spread of the mcr-1 gene represents another step towards pandrug resistance and infections that would be very difficult, if not impossible, to treat. Further spread would increase the morbidity and mortality in patients undergoing advanced medical procedures, thus having a profound effect on the practice of medicine."

In its rapid risk assessment, ECDC outlines a number of actions that need to be considered to reduce identified risks of mcr-1 spread. These include improved laboratory methods for colistin resistance testing and mcr-1 detection, improved surveillance, options for appropriate clinical management, and actions to prevent transmission in healthcare settings as well as in the community.
-end-
ECDC Rapid Risk Assessment: Plasmid-mediated colistin resistance in Enterobacteriaceae

European Antibiotic Awareness Day

Antimicrobial Resistance and Healthcare-associated Infections Programme

EARS-Net antimicrobial resistance interactive database

ECDC directory of online resources for prevention and control of antimicrobial resistance (AMR) and healthcare-associated infections (HAI)

European Centre for Disease Prevention and Control (ECDC)

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.