Scientists discover mechanism of thalidomide

June 17, 2016

In the 1950s, thalidomide (Contergan) was prescribed as a sedative drug to pregnant women, resulting in a great number of infants with serious malformations. Up to now, the reasons for these disastrous birth defects have remained unclear. Researchers at the Technical University of Munich (TUM) have at last identified the molecular mechanism of thalidomide. Their findings are highly relevant to current cancer therapies, as related substances are essential components of modern cancer treatment regimens.

Thalidomide was marketed as a sedative in West Germany and some other countries under the brand name "Contergan". 55 years ago, in 1961, it hit the headlines after having caused horrific deformations in unborn children. Between 5,000 and 10,000 children were affected worldwide. To this day, more than 2,000 victims across the world still live with the consequences of this tragedy. Soon after the discovery of these devastating side effects, the drug was withdrawn from the market. More recently, however, thalidomide is experiencing a kind of renaissance, as it was coincidentally discovered to inhibit the growth of certain tumors.

Since then, the two follow-up substances lenalidomide and pomalidomide have been approved for cancer treatment. Both thalidomide-derivatives are successfully used to treat certain bone-marrow cancers such as multiple myeloma. While showing stronger anti-tumor potential, they have fewer side effects than thalidomide. Despite this, they still pose a risk of causing severe birth defects and must not be taken during pregnancy.

Several proteins involved

Thalidomide, lenalidomide and pomalidomide are also known as immunomodulatory drugs (IMiDs). The name is derived from their ability to modify the body's immune response. Professor Florian Bassermann at the Department of Internal Medicine III of the TUM University Hospital and his team studied the molecular mechanism of IMiDs; their study has recently been published in "Nature Medicine". Bassermann is a Principle Investigator of the German Consortium for Translational Cancer Research (DKTK).

Other research teams had previously established that cereblon, a cellular protein, plays an important role in the function of IMiDs. However, the exact details as to how cereblon mediates the effects of IMiDs have only now been worked out by Prof. Bassermann and his team: Inside cells, cereblon usually binds to the proteins CD147 and MCT1. These two proteins typically occur in blood building and immune cells, and amongst other things, promote proliferation, metabolism and the formation of new blood vessels. In cancers such as multiple myeloma, tumor cells contain particularly high levels of CD147 and MCT1.

IMiDs "outcompete" proteins

As a so-called protein complex, CD147 and MCT1 always occur as a pair. However, to find their other half and become activated, they require the help of cereblon. Binding to the cereblon protein promotes development and stability of the complex, which in return stimulates cell growth and facilitates the excretion of metabolic products like lactate. In diseases such as multiple myeloma an increased abundance of this protein complex enables tumor cells to multiply and spread rapidly. If such a cancer is treated with IMiDs, the drug virtually displaces the complex from its binding to cereblon. As a result, CD147 and MCT1 can no longer be activated and vanish. "Ultimately, this causes the tumor cells to die," says Dr. Ruth Eichner, the study's first author.

Strikingly, the TUM scientists and a research team from the German Centre for Neurodegenerative Diseases (DNZE) were able to demonstrate that the disruption of the protein complex also causes the devastating birth defects. "The mechanisms are identical," Prof. Bassermann explains. "A specific inactivation of the protein complex resulted in the same developmental defects observed after thalidomide treatment." Without these two proteins, blood vessels cannot develop properly. This confirms the prevailing hypothesis that the typical Contergan-induced deformities are related to the reduced and abnormal formation of new blood vessels.

New treatment approaches

Direct clinical consequences can be drawn from the full correlation of clinical efficacy of IMiD treatment with the observed molecular effects. "The disappearance of the protein complex could only be observed in patients that had responded well to this type of treatment," says Florian Bassermann. This could be helpful in assessing a patient's response before starting the actual treatment: A sample of the patient's tumor cells could be taken into culture and treated with IMiDs. If these cells then showed a disruption of the complex, the patient will most likely benefit from IMiD treatment.

The results of this recent study also warrant new cancer therapies without IMiDs. The protein complex is a particularly attractive target for tumor treatment, as it is mainly found on the surface of cells and virtually links the inside to the outside of the cell. Therefore, the inactivation of the complex can easily be achieved using specifically produced antibodies and other distinctive drugs - a possibility that is currently being explored by Prof. Bassermann and his team.
-end-
Contact:

Univ.-Prof. Dr. Florian Bassermann
Department of Internal Medicine III (Hematology/Oncology)
Technical University of Munich
Tel.: +49 89 4140 5038
E-Mail: florian.bassermann@tum.de

Original publication:

Eichner R., Heider M., Fernández-Sáiz V., v. Bebber F., Garz A.K., Lemeer S., Rudelius M., Targosz, B.S., Jacobs L., Knorn A.M., Slawska J., Platzbecker U., Germing U., Langer C., Knop S., Einsele H., Peschel C., Haass C., Keller U., Schmid B., Götze K.S., Kuster B., and Bassermann F. Immunomodulatory drugs disrupt the cereblon-CD147- MCT1 axis to exert antitumor activity and teratogenicity, Nature Medicine, 2016. DOI: 10.1038/nm.4128

Technical University of Munich (TUM)

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.