100-year-old physics model replicates modern Arctic ice melt

June 17, 2019

The Arctic is melting faster than we thought it would. In fact, Arctic ice extent is at a record low. When that happens--when a natural system behaves differently than scientists expect--it's time to take another look at how we understand the system. University of Utah mathematician Ken Golden and atmospheric scientist Court Strong study the patterns formed by ponds of melting water atop the ice. The ponds are dark, while the ice is bright, meaning that the bigger the ponds, the darker the surface and the more solar energy it absorbs.

So, it's more than a little important to know how the ice's reflectivity, also called albedo, is changing. That's a key component in understanding the balance between solar energy coming in and energy reflected out of the Arctic. Earlier work showed that the presence or absence of melt ponds in global climate models can have a dramatic effect on long term predictions of Arctic sea ice volume.

To model the melt ponds' growth, Golden, Strong and their colleagues tweaked a nearly 100-year-old physics model, called the Ising model, that explains how a material may gain or lose magnetism by accounting for how atoms interact with each other and an applied magnetic field. In their model, they replaced the property of an atom's magnetic spin (either up or down) with the property of frozen (white) or melted (blue) sea ice.

"The model captures the essential mechanism of pattern formation of Arctic melt ponds," the researchers write, and replicates important characteristics of the variation in pond size and geometry. This work is the first to account for the basic physics of melt ponds and to produce realistic patterns that accurately demonstrate how melt water is distributed over the sea ice surface. The geometry of the melt water patterns determines both sea ice albedo and the amount of light that penetrates the ice, which significantly impacts the ecology of the upper ocean.

Unfortunately, a model like this can't halt the ice from melting. But it can help us make better estimates of how quickly Arctic ice or permafrost is disappearing--and better climate models help us prepare for the warmer future ahead.
-end-
Find the full study, supported by the U.S. National Science Foundation, the U.S. Office of Naval Research, Northumbria University, the RFBR and the NSF Math Climate Research Network, here:  https://iopscience.iop.org/article/10.1088/1367-2630/ab26db

University of Utah

Related Sea Ice Articles from Brightsurf:

2020 Arctic sea ice minimum at second lowest on record
NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.

Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.

Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.

Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.

Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.

Read More: Sea Ice News and Sea Ice Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.